Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
26 November 2018
14:15
BALINT TOTH
Abstract

We prove the quenched version of the central limit theorem for the displacement of a random walk in doubly stochastic random environment, under the $H_{-1}$-condition, with slightly stronger,  $L^{2+\epsilon}$ (rather than $L^2$) integrability condition on the stream tensor. On the way we extend Nash's moment bound to the non-reversible, divergence-free drift case.  

 

  • Stochastic Analysis Seminar
26 November 2018
14:15
Tomasz Lukowski
Abstract

Amplituhedra are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed as a geometric construction encoding scattering amplitudes in the four-dimensional maximally supersymmetric Yang-Mills theory, they are mathematically interesting objects on their own. In my talk I strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. I focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional
conjugates. I show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron canonical differential form in all these cases. Notably, this also naturally exposes the rich combinatorial structures of amplituhedra, such as their regular triangulations

  • Geometry and Analysis Seminar
26 November 2018
15:45
LIU CHONG
Abstract

In semimartingale optimal transport problem, the functional to be minimized can be considered as a “stochastic action”, which is the expectationof a “stochastic Lagrangian” in terms of differential semimartingale characteristics. Therefore it would be natural to apply variational calculus approach to characterize the minimizers. R. Lassalle and A.B. Cruzeiro have used this approach to establish a stochastic Euler-Lagrangian condition for semimartingale optimal transport by perturbing the drift terms. Motivated by their work, we want to perform the same type of calculus for martingale optimal transport problem. In particular, instead of only considering perturbations in the drift terms, we try to find a nice variational family for volatility,and then obtain the stochastic Euler-Lagrangian condition for martingale laws. In the first part of this talk we will mention some basic results regarding the existence of minimizers in semimartingale optimal transport problem. In the second part, we will introduce Lassalle and Cruzeiro’s  work, and give a simple example related to this topic, where the variational family is induced by time-changes; and then we will introduce some potential problems that are needed to be solved.

  • Stochastic Analysis Seminar
26 November 2018
15:45
Abstract


In this talk I will articulate and contextualize the following sequence of results.

The Bruhat decomposition of the general linear group defines a stratification of the orthogonal group.
Matrix multiplication defines an algebra structure on its exit-path category in a certain Morita category of categories.  
In this Morita category, this algebra acts on the category of n-categories -- this action is given by adjoining adjoints to n-categories. 

This result is extracted from a larger program -- entirely joint with John Francis, some parts joint with Nick Rozenblyum -- which proves the cobordism hypothesis.  

26 November 2018
17:00
Abstract

 I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.

27 November 2018
14:00
Oliver Sheridan-Methven
Abstract

Employing the usual multilevel Monte Carlo estimator, we introduce a framework for estimating the solutions of SDEs by an Euler-Maruyama scheme. By considering the expected value of such solutions, we produce simulations using approximately normal random variables, and recover the estimate from the exact normal distribution by use of a multilevel correction, leading to faster simulations without loss of accuracy. We will also highlight this concept in the framework of reduced precision and vectorised computations.

  • Numerical Analysis Group Internal Seminar
27 November 2018
14:30
Patrick Farrell
Abstract

When approximating PDEs with the finite element method, large sparse linear systems must be solved. The ideal preconditioner yields convergence that is  algorithmically optimal and parameter robust, i.e. the number of Krylov iterations required to solve the linear system to a given accuracy does not grow substantially as the mesh or problem parameters are changed.

Achieving this for the stationary Navier-Stokes has proven challenging: LU factorisation is Reynolds-robust but scales poorly with degree of freedom count, while Schur complement approximations such as PCD and LSC degrade as the Reynolds number is increased.

Building on the work of Schöberl, Olshanskii and Benzi, in this talk we present the first preconditioner for the Newton linearisation of the stationary Navier--Stokes equations in three dimensions that achieves both optimal complexity and Reynolds-robustness. The scheme combines a novel tailored finite element discretisation, discrete augmented Lagrangian stabilisation, a custom prolongation operator involving local solves on coarse cells, and an additive patchwise relaxation on each
level. We present 3D simulations with over one billion degrees of freedom with robust performance from Reynolds number 10 to 5000.

  • Numerical Analysis Group Internal Seminar

Pages

Add to My Calendar