Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
27 November 2017
14:30
Mathias Schacht
Abstract

The interplay of minimum degree and 'structural properties' of large graphs with a given forbidden subgraph is a central topic in extremal graph theory. For a given graph $F$ we define the homomorphism threshold as the infimum $\alpha$ such that every $n$-vertex $F$-free graph $G$ with minimum degree $>\alpha n$ has a homomorphic image $H$ of bounded size (independent of $n$), which is $F$-free as well. Without the restriction of $H$ being $F$-free we recover the definition of the chromatic threshold, which was determined for every graph $F$ by Allen et al. The homomorphism threshold is less understood and we present recent joint work with O. Ebsen on the homomorphism threshold for odd cycles.

  • Combinatorial Theory Seminar
27 November 2017
15:45
ALEKSANDAR MIJATOVIC
Abstract

Abstract: In this talk we describe an invariance principle for a class of non-homogeneous martingale random walks in $\RR^d$ that can be recurrent or transient for any dimension $d$. The scaling limit, which we construct, is a martingale diffusions with law determined uniquely by an SDE with discontinuous coefficients at the origin whose pathwise uniqueness may fail. The radial component of the diffusion is a Bessel process of dimension greater than 1. We characterize the law of the diffusion, which must start at the origin, via its excursions built around the Bessel process: each excursion has a generalized skew-product-type structure, in which the angular component spins at infinite speed at the start and finish of each excursion. Defining a Riemannian metric $g$ on the sphere $S^{d−1}$, different from the one induced by the ambient Euclidean space, allows us to give an explicit construction of the angular component (and hence of the entire skew-product decomposition) as a time-changed Browninan motion with drift on the Riemannian manifold $(S^{d−1}, g)$. In particular, this provides a multidimensional generalisation of the Pitman–Yor representation of the excursions of Bessel process with dimension between one and two. Furthermore, the density of the stationary law of the angular component with respect to the volume element of $g$ can be characterised by a linear PDE involving the Laplace–Beltrami operator and the divergence under the metric $g$. This is joint work with Nicholas Georgiou and Andrew Wade.

  • Stochastic Analysis Seminar
27 November 2017
15:45
Steven Sivek
Abstract

The cyclic surgery theorem of Culler, Gordon, Luecke, and Shalen implies that any knot in S^3 other than a torus knot has at most two nontrivial cyclic surgeries. In this talk, we investigate the weaker notion of SU(2)-cyclic surgeries on a knot, meaning surgeries whose fundamental groups only admit SU(2) representations with cyclic image. By studying the image of the SU(2) character variety of a knot in the “pillowcase”, we will show that if it has infinitely many SU(2)-cyclic surgeries, then the corresponding slopes (viewed as a subset of RP^1) have a unique limit point, which is a finite, rational number, and that this limit is a boundary slope for the knot. As a corollary, it follows that for any nontrivial knot, the set of SU(2)-cyclic surgery slopes is bounded. This is joint work with Raphael Zentner.

27 November 2017
16:00
Charles Dapogny
Abstract

In this presentation, we investigate the spectrum of the Neumann-Poincaré operator associated to a periodic distribution of small inclusions with size ε, and its asymptotic behavior as the parameter ε vanishes. Combining techniques pertaining to the fields of homogenization and potential theory, we prove that the limit spectrum is composed of the `trivial' eigenvalues 0 and 1, and of a subset which stays bounded away from 0 and 1 uniformly with respect to ε. This non trivial part is the reunion of the Bloch spectrum, accounting for the collective resonances between collections of inclusions, and of the boundary layer spectrum, associated to eigenfunctions which spend a not too small part of their energies near the boundary of the macroscopic device. These results shed new light about the homogenization of the voltage potential uε caused by a given source in a medium composed of a periodic distribution of small inclusions with an arbitrary (possibly negative) conductivity a surrounded by a dielectric medium, with unit conductivity.

  • Partial Differential Equations Seminar
28 November 2017
12:00
Maria del Rio Chanona
Abstract

Current technological progress has raised concerns about automation of tasks performed by workers resulting in job losses. Previous studies have used machine learning techniques to compute the automation probability of occupations and thus, studied the impact of automation on employment. However, such studies do not consider second-order effects, for example, an occupation with low automation probability can have a  surplus of labor supply due to similar occupations being automated. In this work, we study such second-order effects of automation using a network approach.  In our network – the Job Space – occupations are nodes and edges link occupations which share a significant amount of work activities. By mapping employment, automation probabilities into the network, and considering the movement of workers, we show that an occupation’s position in the network may be crucial to determining its employment future.

 

28 November 2017
14:00
Charles Dapogny
Abstract

The purpose of this work is to introduce a new constraint functional for shape optimization problems, which enforces the constructibility by means of additive manufacturing processes, and helps in preventing the appearance of overhang features - large regions hanging over void which are notoriously difficult to assemble using such technologies. The proposed constraint relies on a simplified model for the construction process: it involves a continuum of shapes, namely the intermediate shapes corresponding to the stages of the construction process where the total, final shape is erected only up to a certain level. The shape differentiability of this constraint functional is analyzed - which is not a standard issue because of its peculiar structure. Several numerical strategies and examples are then presented. This is a joint work with G. Allaire, R. Estevez, A. Faure and G. Michailidis.

  • Numerical Analysis Group Internal Seminar
28 November 2017
14:15
Marcelo De Martino
Abstract

In this joint work with D. Ciubotaru, we introduce the notion of local and global indices of Dirac operators for a rational Cherednik algebra H, with underlying reflection group G. In the local theory, I will report on some relations between the (local) Dirac index of a simple module in category O, the graded G-character and the composition series polynomials for standard modules. In the global theory, we introduce an "integral-reflection" module over which we define and compute the index of a (global) Dirac operator and show that the index is independent of the parameters. If time permits, I will discuss some local-global relations.

28 November 2017
15:45
Evgeny Shinder
Abstract

The specialization question for rationality is the following one: assume that very general fibers of a flat proper morphism are rational, does it imply that all fibers are rational? I will talk about recent solution of this question in characteristic zero due to myself and Nicaise, and Kontsevich-Tschinkel. The method relies on a construction of various specialization morphisms for the Grothendieck ring of varieties (stable rationality) and the Burnside ring of varieties (rationality), which in turn rely on the Weak Factorization and Semi-stable Reduction Theorems.

  • Algebraic Geometry Seminar

Pages

Add to My Calendar