Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
4 December 2017
14:15
Abstract

A bold conjecture of Boyer-Gorden-Watson and others posit that for any irreducible rational homology 3-sphere M the following three conditions are equivalent: (1) the fundamental group of M is left-orderable, (2) M has non-minimal Heegaard Floer homology, and (3) M admits a co-orientable taut foliation. Very recently, this conjecture was established for all graph manifolds by the combined work of Boyer-Clay and Hanselman-Rasmussen-Rasmussen-Watson. I will discuss a computational survey of these properties involving half a million hyperbolic 3-manifolds, including new or at least improved techniques for computing each of these properties.
 

  • Geometry and Analysis Seminar
4 December 2017
15:45
Abstract

The bipolar filtration of Cochran, Harvey and Horn initiated the study of deeper structures of the smooth concordance group of the topologically slice knots. We show that the graded quotient of the bipolar filtration has infinite rank at each stage greater than one. To detect nontrivial elements in the quotient, the proof uses higher order amenable Cheeger-Gromov $L^2$ $\rho$-invariants and infinitely many Heegaard Floer correction term $d$-invariants simultaneously. This is joint work with Jae Choon Cha.

5 December 2017
12:00
to
13:15
Kasper Larsen
Abstract

Scattering amplitudes computed at a fixed loop order, along with any other object computed in perturbative QFT, can be expressed as a linear combination of a finite basis of loop integrals. To compute loop amplitudes in practise, such a basis of integrals must be determined. In this talk I introduce a new algorithm for finding bases of loop integrals and discuss its implementation in the publically available package Azurite.

6 December 2017
11:30
to
13:00
Yuli Chashechkin
Abstract

We observed and measured the impact and secondary oscillating bubble sounds, capillary waves produced by small impact droplets of the surface of submerging drop and picturesque filament and grid structures produced by coloured drop on the surface of the cavity and crown. Physical model includes discussion of  the potential surface energy effects.

  • Industrial and Applied Mathematics Seminar
6 December 2017
17:00
Alex Bellos
Abstract

In our Oxford Mathematics Christmas Lecture Alex Bellos challenges you with some festive brainteasers as he tells the story of mathematical puzzles from the middle ages to modern day. Alex is the Guardian’s puzzle blogger as well as the author of several works of popular maths, including Puzzle Ninja, Can You Solve My Problems? and Alex’s Adventures in Numberland.

Please email external-relations@maths.ox.ac.uk to register.

 

Professor James Nagy
Abstract


In this talk we describe an approach to approximate the truncated singular value decomposition of a large matrix by first decomposing the matrix into a sum of Kronecker products. Our approach can be used to more efficiently approximate a large number of singular values and vectors than other well known schemes, such as iterative algorithms based on the Golub-Kahan bidiagonalization or randomized matrix algorithms. We provide theoretical results and numerical experiments to demonstrate accuracy of our approximation, and show how the approximation can be used to solve large scale ill-posed inverse problems, either as an approximate filtering method, or as a preconditioner to accelerate iterative algorithms.
 

  • Computational Mathematics and Applications Seminar
15 December 2017
10:00
Abstract

Lein Applied Diagnostics has a novel optical measurement technique that is used to measure various parameters in the body for medical applications.

Two particular areas of interest are non-invasive glucose measurement for diabetes care and the diagnosis of diabetes. Both measurements are based on the eye and involve collecting complex data sets and modelling their links to the desired parameter.

If we take non-invasive glucose measurement as an example, we have two data sets – that from the eye and the gold standard blood glucose reading. The goal is to take the eye data and create a model that enables the calculation of the glucose level from just that eye data (and a calibration parameter for the individual). The eye data consists of measurements of apparent corneal thickness, anterior chamber depth, optical axis orientation; all things that are altered by the change in refractive index caused by a change in glucose level. So, they all correlate with changes in glucose as required but there are also noise factors as these parameters also change with alignment to the meter etc. The goal is to get to a model that gives us the information we need but also uses the additional parameter data to discount the noise features and thereby improve the accuracy.

  • Industrial and Interdisciplinary Workshops

Pages

Add to My Calendar