We study a simple one-dimensional coupled heat wave system, obtaining a sharp estimate for the rate of energy decay of classical solutions. Our approach is based on the asymptotic theory of $C_0$-semigroups and in particular on a result due to Borichev and Tomilov (2010), which reduces the problem of estimating the rate of energy decay to finding a growth bound for the resolvent of the semigroup generator. This technique not only leads to an optimal result, it is also simpler than the methods used by other authors in similar situations and moreover extends to problems on higher-dimensional domains. Joint work with C.J.K. Batty (Oxford) and L. Paunonen (Tampere).

# Past PDE CDT Lunchtime Seminar

The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin

^{ }-sense and in the $L^{\infty}$ -sense) to be a halfplane, depending on $R$. This is a joint work with Joaquim Serra and Enrico Valdinoci.

I will discuss a puzzling theorem about smooth, periodic, real-valued functions on the real line. After introducing the classical Hardy-Littlewood maximal function (which just takes averages over intervals centered at a point), we will prove that if a function has the property that the computation of the maximal function is simple (in the sense that it's enough to check two intervals), then the function is already sin(x) (up to symmetries). I do not know what maximal local averages have to do with the trigonometric function. Differentiation does not help either: the statement equivalently says that a delay differential equation with a solution space of size comparable to C^1(0,1) has only the trigonometric function as periodic solutions.

Joint work with Anders Hansen (Cambridge), Olavi Nevalinna (Aalto) and Markus Seidel (Zwickau).

I will present two recent results concerning the stability of boundary layer asymptotic expansions of solutions of Navier-Stokes with small viscosity. First, we show that the linearization around an arbitrary stationary shear flow admits an unstable eigenfunction with small wave number, when viscosity is sufficiently small. In boundary-layer variables, this yields an exponentially growing sublayer near the boundary and hence instability of the asymptotic expansions, within an arbitrarily small time, in the inviscid limit. On the other hand, we show that the Prandtl asymptotic expansions hold for certain steady flows. Our proof involves delicate construction of approximate solutions (linearized Euler and Prandtl layers) and an introduction of a new positivity estimate for steady Navier-Stokes. This in particular establishes the inviscid limit of steady flows with prescribed boundary data up to order of square root of small viscosity. This is a joint work with Emmanuel Grenier and Yan Guo.