Forthcoming events in this series


Wed, 15 Jun 2022
14:00
L5

The heterotic $G_2$ system and coclosed $G_2$-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
(Oxford)
Abstract

When considering compatifications of heterotic string theory down to 3D, the heterotic $G_2$ system arises naturally. It is a system for both geometric fields and gauge fields over a manifold with a $G_2$-structure. In particular, it asks for the $G_2$-structure to be coclosed. We will begin this talk defining this system and giving a description of the geometry of cohomogeneity one manifolds. Then, we will look for coclosed $G_2$-structures in the cohomogeneity one setting. We will end up by proving the existence of a family of coclosed $G_2$-structures which are invariant under a cohomogeneity one action of $\text{SU}(2)^2$ on certain seven-dimensional simply connected manifolds.

Wed, 01 Jun 2022
14:00
L5

Spectral Decomposition of Partition Functions

Carmen Jorge-Diaz
(Oxford)
Abstract

Modular forms of slow growth admit a decomposition in terms of the eigenfunctions of the Laplacian operator in the Upper Half Plane. Whilst this technology has been used for many years in the context of Number Theory, it has only recently been used to further understand the partition function and the spectrum of Conformal Field Theories in 2d. In this talk, we’ll review the technology and how it has been applied to CFTs by several authors, as well as present a few new results.

Wed, 25 May 2022

14:00 - 15:00
L5

Topological Orders and Higher Fusion Categories

Thibault Décoppet
(Oxford)
Abstract

The notion of topological order was introduced by Xiao-Gang Wen in order to capture the features of the exotic phases of matter given by fractional quantum Hall phases. I will motivate why the corresponding mathematical structures are higher categories with additional properties. In 2+1-dimensions, I will explain in details how the definition of fusion category arises from physical and geometrical intuitions about topological orders. Finally, I will sketch how the notion of higher fusion category emerges in higher dimensions.

Wed, 18 May 2022

12:45 - 14:00
L4

A pedestrian introduction to the geometry of 3d twisted indices

Andrea Ferrari
(Durham)
Further Information

Please note the unusual time.

Abstract

3d N=4 gauge theories can be studied on a circle times a closed Riemann surface. Their partition functions on this geometry, known as twisted indices, were computed some time ago using supersymmetric localisation on the Coulomb branch. An alternative perspective is to consider the theory as a supersymmetric quantum mechanics on S^1. In this talk I will review this point of view, which unveils interesting connection to topics in geometry such as wall-crossing and symplectic duality of quasi-maps.

Wed, 11 May 2022

13:00 - 14:30
L4

Refinements of G2 structures

Matthew Magill
(Uppsala)
Further Information

Note the unusual time 13:00.

Abstract

G2 structure manifolds are a key ingredient in supersymmetric compactifications on seven-manifolds. We will discuss the fact that G2 structure manifolds admit refinements in the form of almost contact (3-) structures.  In fact, there are infinite dimensional spaces of these structures. We will discuss topological and differential geometric aspects of (the space of) these refinements. We will then explore applications in physics, including supersymmetry enhancement. This is based on 2101.12605.

Wed, 27 Apr 2022

14:00 - 15:00
Virtual

Kazhdan-Lusztig Equivalence at the Iwahori Level

Yuchen Fu
(Harvard)
Abstract
We construct an equivalence between Iwahori-integrable representations of affine Lie algebras and representations of the "mixed" quantum group, thus confirming a conjecture by Gaitsgory. Our proof utilizes factorization methods: we show that both sides are equivalent to algebraic/topological factorization modules over a certain factorization algebra, which can then be compared via Riemann-Hilbert. On the quantum group side this is achieved via general machinery of homotopical algebra, whereas the affine side requires inputs from the theory of (renormalized) ind-coherent sheaves as well as compatibility with global geometric Langlands over P1. This is joint work with Lin Chen.
 
Wed, 09 Mar 2022

14:00 - 15:00
Virtual

G_2 instantons in twisted M-theory

Jihwan Oh
(Oxford University)
Abstract

I will discuss a string theory way to study G_2 instanton moduli space and explain how to compute the instanton partition function for a certain G_2 manifold. An important insight comes from the twisted M-theory on the G_2 manifold. Building on the example, I will explain a possibility to extend the story to a large set of conjectural G_2 manifolds and a possible connection to 4d N=1 SCFT via geometric engineering. This talk is based on https://arxiv.org/abs/2109.01110 and a series of works in progress with Michele Del Zotto and Yehao Zhou.

 

 

Wed, 02 Mar 2022

14:00 - 15:00
Virtual

Twisted eleven-dimensional supergravity and exceptional lie algebras

Surya Raghavendran
(University of Toronto and Perimeter Institute)
Abstract

I'll describe an interacting holomorphic-topological field theory in eleven dimensions defined on products of Calabi-Yau 5-folds with real one-manifolds. The theory describes a certain deformation of the cotangent bundle to the moduli of Calabi-Yau deformations of the 5-fold and conjecturally describes a certain protected sector of eleven-dimensional supergravity. Strikingly, the theory has an infinite dimensional global symmetry algebra given by an extension of the exceptional lie superalgebra E(5,10) first studied by Kac. This talk is based on joint work with Ingmar Saberi and Brian Williams.

 

Wed, 23 Feb 2022

14:00 - 15:00
L5

The chiral algebras of class S

Sujay Nair
Abstract

In 2013, Beem, Lemos, Liendo, Peelaers, Rastelli and van Rees found a remarkable correspondence between SCFTs in 4d with N ≥ 2 and vertex algebras. The chiral algebras of class S, i.e. the vertex algebras associated to theories of Class S, are of particular interest as they exhibit rich algebraic structures arising from the requirement of generalised S-duality. I will explain a mathematical construction of these vertex algebras, due to Arakawa, that is remarkably uniform and requires no knowledge of the underlying SCFT. Time permitting, I will detail a recent generalisation of this construction to the case of the chiral algebras of class S with outer automorphism twist lines.

Wed, 16 Feb 2022

14:00 - 15:00
Virtual

Local operators of 4d N=2 gauge theories from the affine grasmmannian

Wenjun Niu
(UC Davis)
Abstract

In this talk, I will explain how to obtain the space of local operators of a 4d N=2 gauge theory using the category of line operators in the Kapustin twist (holomorphic topological twist). This category is given a precise definition by Cautis-Williams, as the category of equivariant coherent sheaves on the space of Braverman-Finkelberg-Nakajima. We compute the derived endomorphism of the monoidal unit in this category, and show that it coincides with the vacuum module of the Poisson vertex algebra of Oh-Yagi and Butson. The Euler character of this space reproduces the Schur index. I will also explain how to obtain the space of local operators at the junction of minimal Wilson-t’Hooft line operators. Its Euler character can be compared to the index formula of Cordova-Gaiotto-Shao. This is based on arXiv: 2112.12164.

Wed, 24 Nov 2021

14:00 - 15:00
L5

An Introduction to Process Theories and Categorical Quantum Mechanics

James Hefford
Abstract

In recent years it has been fruitful to model the physical world in a categorical framework. In this talk I will give an outline of this process theoretic view with a particular focus on its applications to quantum mechanics and quantum computing. I will discuss how abstract categorical structure captures certain quantum protocols, such as teleportation, unearthing the topological nature of them, and how we can use algebraic structures internal to a category to develop a framework for circuit-based quantum computing in the form of the ZX-calculus.

Wed, 17 Nov 2021

14:00 - 15:00
L5

Symplectic duality, 3d mirror symmetry, and the Coulomb branch construction of Braverman-Finkelberg-Nakajima

Dylan Butson
Abstract

I'll explain 'symplectic duality', a surprising relationship between certain pairs of algebraic symplectic manifolds, under which Hamiltonian automorphisms of one are identified with Poisson deformations of the other, and which is ultimately characterized by a Koszul-type equivalence between categories of modules over their filtered quantizations. I'll outline why such relationships are expected from physics in terms of three dimensional mirror symmetry, and rediscover the Coulomb branch construction of Braverman-Finkelberg-Nakajima from this perspective. We'll see that this explicitly constructs the symplectic dual of any variety which is presented as the symplectic reduction of a vector space by a reductive group.
 

Wed, 10 Nov 2021

14:00 - 15:00
Virtual

3d N=4 theories on an elliptic curve

Daniel Zhang
(Cambridge DAMTP)
Abstract

I will discuss 3d N=4 supersymmetric gauge theories compactified on an elliptic curve, and how this set-up physically realises recent mathematical results on the equivariant elliptic cohomology of symplectic resolutions. In particular, I will describe the Berry connection for supersymmetric ground states, and in doing so connect the elliptic cohomology of the Higgs branch with spectral data of doubly periodic monopoles. I will show that boundary conditions, via a consideration of boundary ’t Hooft anomalies, naturally represent elliptic cohomology classes. Finally, if I have time, I will discuss mirror symmetry/symplectic duality in our framework, and physically recover concepts in elliptic cohomology such as the mother function, and the elliptic stable envelopes of Aganagic-Okounkov.


This talk will be based on https://arxiv.org/abs/2109.10907 with Mathew Bullimore.

Wed, 03 Nov 2021

14:00 - 15:00
Virtual

Scattering Amplitudes and Cluster Algebras

Anders Schreiber
Abstract

In this talk we will study scattering amplitudes N=4 super-Yang-Mills theory. In this theory, scattering amplitudes are known to be functions of cluster variables of Gr(4,n) and certain algebraic functions of cluster variables. We will give an overview of how this cluster algebraic structure manifests, and will exploit it in an algorithm for computing symbol alphabets by solving matrix equations of the form C.Z = 0 associated with plabic graphs. These matrix equations associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. We are able to reproduce all known algebraic functions of cluster variables appearing in known symbol alphabets. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

Wed, 27 Oct 2021

14:00 - 15:00
L5

Calabi-Yau Modularity and Black Holes

Pyry Kuusela
Abstract

One of the consequences of Wiles' proof of Fermat's Last Theorem is that elliptic curves over rational numbers can be associated with modular forms, whose Fourier coefficients essentially count points on the curve. Generalisation of this modularity to higher dimensional varieties is a very interesting open question. In this talk I will give a physicist's view of Calabi-Yau modularity. Starting with a very simplified overview of some number theoretic background related to the Langlands program, I relate some of this theory to black holes in IIB/A string theories compactified on Calabi-Yau threefolds. It is possible to associate modular forms to certain such black holes. We can then ask whether these modular forms have a physical interpretation as, for example, counting black hole microstates. In an attempt to answer this question, we derive a formula for fully instanton-corrected black hole entropy, which gives an interesting hint of this counting. The talk is partially based on recent work arXiv:2104.02718 with P. Candelas and J. McGovern.

Wed, 13 Oct 2021

14:00 - 15:00
L5

The long shadow of 4d N = 2 SCFTs in mathematics: four minitalks

Abstract

4d N=2 SCFTs are extremely important structures. In the first minitalk we will introduce them, then we will show three areas of mathematics with which this area of physics interacts. The minitalks are independent. The talk will be hybrid, with teams link below.

The junior Geometry and Physics seminar aims to bring together people from both areas, giving talks which are interesting and understandable to both.

Website: https://sites.google.com/view/oxfordpandg/physics-and-geometry-seminar

Teams link: https://www.google.com/url?q=https%3A%2F%2Fteams.microsoft.com%2Fl%2Fme…