Past Algebraic and Symplectic Geometry Seminar

19 November 2013
15:45
Will Merry
Abstract
Rabinowitz Floer homology (RFH) is the Floer theory associated to the Rabinowitz action functional. One can think of this functional as a Lagrange multiplier functional of the unperturbed action functional of classical mechanics. Its critical points are closed orbits of arbitrary period but with fixed energy. This fixed energy problem can be transformed into a fixed period problem on an enlarged phase space. This provides a way to see RFH as a "standard" Hamiltonian Floer theory, and allows one to treat RFH on an equal footing to other related Floer theories. In this talk we explain how this is done and discuss several applications. Joint work with Alberto Abbondandolo and Alexandru Oancea.
  • Algebraic and Symplectic Geometry Seminar
19 November 2013
14:00
Will Merry
Abstract

In 2000 Eliashberg-Polterovich introduced the natural notion of orderability of contact manifolds; that is, the existence of a natural partial order on the group of contactomorphisms. I will explain how one can study orderability questions using the machinery of Rabinowitz Floer homology. We establish a link between orderable and hypertight contact manifolds, and show that the Weinstein Conjecture holds (i.e. there exists a closed Reeb orbit) whenever there exists a positive (not necessarily contractible) loop of contactomorphisms.

Joint work with Peter Albers and Urs Fuchs.

  • Algebraic and Symplectic Geometry Seminar
5 November 2013
15:45
Michael Groechenig
Abstract

The Contou-Carrère symbol has been introduced in the 90's in the study of local analogues of autoduality of Jacobians of smooth projective curves. It is closely related to the tame symbol, the residue pairing, and the canonical central extension of loop groups. In this talk we will a discuss a K-theoretic interpretation of the Contou-Carrère symbol, which allows us to generalize this one-dimensional picture to higher dimensions. This will be achieved by studying the K-theory of Tate objects, giving rise to natural central extensions of higher loop groups by spectra. Using the K-theoretic viewpoint, we then go on to prove a reciprocity law for higher-dimensional Contou-Carrère symbols. This is joint work with O. Braunling and J. Wolfson.

  • Algebraic and Symplectic Geometry Seminar
29 October 2013
15:45
Ionut Ciocan-Fontanine
Abstract

Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.

  • Algebraic and Symplectic Geometry Seminar
29 October 2013
14:00
Ionut Ciocan-Fontanine
Abstract

Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.

  • Algebraic and Symplectic Geometry Seminar
22 October 2013
15:45
Toby Dyckerhoff
Abstract

The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.

  • Algebraic and Symplectic Geometry Seminar
22 October 2013
14:00
Toby Dyckerhoff
Abstract

The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.

  • Algebraic and Symplectic Geometry Seminar
15 October 2013
15:45
Will Donovan
Abstract
I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. In particular, I will explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations, even in the singular setting. We investigate the properties of this algebra, and indicate how to calculate it in examples using quiver techniques. This gives new information about the (commutative) geometry of 3-folds, and in particular provides a new tool to differentiate between flops. As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve. In this setting, work of Bridgeland and Chen yields a Fourier-Mukai flop-flop functor which acts on the derived category of the 3-fold (assuming any singularities are at worst Gorenstein terminal). We show that this functor can be described as a spherical twist about the universal family over the noncommutative deformation algebra. In the second part, I will talk about further work in progress, and explain some more technical details, such as the use of noncommutative deformation functors, and the categorical mutations of Iyama and Wemyss. If there is time, I will also give some higher-dimensional examples, and discuss situations involving chains of intersecting floppable curves. In this latter case, deformations, intersections and homological properties are encoded by the path algebra of a quiver, generalizing the algebra of noncommutative deformations.
  • Algebraic and Symplectic Geometry Seminar

Pages