Past Algebraic and Symplectic Geometry Seminar

7 July 2008
14:15
Abstract
Mean curvature vector is the negative gradient of the area functional. Thus if we deform a submanifold along its mean curvature vector, which is called mean curvature flow (MCF), the area will decrease most rapidly. When the ambient manifold is Kahler-Einstein, being Lagrangian is preserved under MCF. It is thus very natural trying to construct special Lagrangian/ Lagrangian minimal through MCF. In this talk, I will make a brief introduction and report some of my recent works with my coauthors in this direction, which mainly concern the singularities of the flow.
  • Algebraic and Symplectic Geometry Seminar
30 June 2008
14:15
Jim Bryan
Abstract
There are two basic theories of curve counting on Calabi-Yau threefolds. Donaldson-Thomas theory arises by considering curves as subschemes; Gromov-Witten theory arises by considering curves as the image of maps. Both theories can also be formulated for orbifolds. Let X be a dimension three Calabi-Yau orbifold and let Y --> X be a Calabi-Yau resolution. The Gromov-Witten theories of X and Y are related by the Crepant Resolution Conjecture. The Gromov-Witten and Donaldson-Thomas theories of Y are related by the famous MNOP conjecture. In this talk I will (with some provisos) formulate the remaining equivalences: the crepant resolution conjecture in Donaldson-Thomas theory and the MNOP conjecture for orbifolds. I will discuss examples to illustrate and provide evidence for the conjectures.
  • Algebraic and Symplectic Geometry Seminar
3 June 2008
15:45
Dominic Joyce
Abstract
This is the second of two seminars this afternoon describing a generalization of Donaldson-Thomas invariants, joint work of Yinan Song and Dominic Joyce. (Still work in progress.) Behrend showed that conventional Donaldson-Thomas invariants can be written as the Euler characteristic of the moduli space of semistable sheaves weighted by a "microlocal obstruction function" \mu. In previous work, the speaker defined Donaldson-Thomas type invariants "counting" coherent sheaves on a Calabi-Yau 3-fold using Euler characteristics of sheaf moduli spaces, and more generally, of moduli spaces of "configurations" of sheaves. However, these invariants are not deformation-invariant. We now combine these ideas, and insert Behrend's microlocal obstruction \mu into the speaker's previous definition to get new generalized Donaldson-Thomas invariants. Microlocal functions \mu have a multiplicative property implying that the new invariants transform according to the same multiplicative transformation law as the previous invariants under change of stability condition. Then we show that the invariants counting pairs in the previous seminar are sums of products of the new generalized Donaldson-Thomas invariants. Since the pair invariants are deformation invariant, we can deduce by induction on rank that the new generalized Donaldson-Thomas invariants are unchanged under deformations of the underlying Calabi-Yau 3-fold.
  • Algebraic and Symplectic Geometry Seminar
3 June 2008
14:15
Yinan Song
Abstract
This is the first of two seminars this afternoon describing a generalization of Donaldson-Thomas invariants, joint work of Yinan Song and Dominic Joyce. We shall define invariants "counting" semistable coherent sheaves on a Calabi-Yau 3-fold. Our invariants are invariant under deformations of the complex structure of the underlying Calabi-Yau 3-fold, and have known transformation law under change of stability condition. This first seminar constructs an auxiliary invariant "counting" stable pairs (s,E), where E is a Gieseker semistable coherent sheaf with fixed Hilbert polynomial and s : O(-n) --> E for n >> 0 is a morphism of sheaves, and (s,E) satisfies a stability condition. Using Behrend-Fantechi's approach to obstruction theories and virtual classes we prove this auxiliary invariant is unchanged under deformation of the underlying Calabi-Yau 3-fold.
  • Algebraic and Symplectic Geometry Seminar
20 May 2008
15:45
Thomas Nevins
Abstract
The geometric Langlands program aims at a "spectral decomposition" of certain derived categories, in analogy with the spectral decomposition of function spaces provided by the Fourier transform. I'll explain such a geometrically-defined spectral decomposition of categories for a particular geometry that arises naturally in connection with integrable systems (more precisely, the quantum Calogero-Moser system) and representation theory (of Cherednik algebras). The category in this case comes from the moduli space of vector bundles on a curve equipped with a choice of ``mirabolic'' structure at a point. The spectral decomposition in this setting may be understood as a case of ``tamely ramified geometric Langlands''. In the talk, I won't assume any prior familiarity with the geometric Langlands program, integrable systems or Cherednik algebras.
  • Algebraic and Symplectic Geometry Seminar

Pages