Past Junior Geometry and Topology Seminar

8 November 2012
15:00
Martin Palmer
Abstract
Fix a connected manifold-with-boundary M and a closed, connected submanifold P of its boundary. The set of all possible submanifolds of M whose components are pairwise unlinked and each isotopic to P can be given a natural topology, and splits into a disjoint union depending on the number of components of the submanifold. When P is a point this is just the usual (unordered) configuration space on M. It is a classical result, going back to Segal and McDuff, that for these spaces their homology in any fixed degree is eventually independent of the number of points of the configuration (as the number of points goes to infinity). I will talk about some very recent work on extending this result to higher-dimensional submanifolds: in the above setup, as long as P is of sufficiently large codimension in M, the homology in any fixed degree is eventually independent of the number of components. In particular I will try to give an idea of how the codimension restriction arises, and how it can be improved in some special cases.
  • Junior Geometry and Topology Seminar
18 October 2012
15:00
Alberto Cazzaniga
Abstract
We will go through the GIT construction of the moduli space of quiver representations. Concentrating on examples (probably the cases of Hilbert schemes of points of $\mathbb{C}^{2}$ and $\mathbb{C}^{3}$) we will try to give an idea of why this methods became relevant in modern (algebraic) geometry. No prerequisites required, experts would probably get bored.
  • Junior Geometry and Topology Seminar
11 October 2012
12:00
Jakob Blaavand
Abstract
This talk will discuss the notion of a Nahm transform in differential geometry, as a way of relating solutions to one differential equation on a manifold, to solutions of another differential equation on a different manifold. The guiding example is the correspondence between solutions to the Bogomolny equations on $\mathbb{R}^3$ and Nahm equations on $\mathbb{R}$. We extract the key features from this example to create a general framework.
  • Junior Geometry and Topology Seminar
7 June 2012
12:00
Tom Hawes
Abstract
The aim of this talk is to give an introduction to Geometric Invariant Theory (GIT) for reductive groups over the complex numbers. Roughly speaking, GIT is concerned with constructing quotients of group actions in the category of algebraic varieties. We begin by discussing what properties we should like quotient varieties to possess, highlighting so-called `good' and `geometric' quotients, and then turn to search for these quotients in the case of affine and projective varieties. Here we shall see that the construction runs most smoothly when we assume our group to be reductive (meaning it can be described as the complexification of a maximal compact subgroup). Finally, we hope to say something about the Hilbert-Mumford criterion regarding semi-stability and stability of points, illustrating it by constructing the rough moduli space of elliptic curves.
  • Junior Geometry and Topology Seminar
31 May 2012
12:00
Richard Manthorpe
Abstract
Given a manifold $M$ and a basepointed labelling space $X$ the space of unordered finite configurations in $M$ with labels in $X$, $C(M;X)$ is the space of finite unordered tuples of points in $M$, each point with an associated point in $X$. The space is topologised so that particles cannot collide. Given a compact submanifold $M_0\subset M$ we define $C(M,M_0;X)$ to be the space of unordered finite configuration in which points `vanish' in $M_0$. The scanning map is a homotopy equivalence between the configuration space and a section space of a certain $\Sigma^nX$-bundle over $M$. Throughout the 70s and 80s this map has been given several unsatisfactory and convoluted definitions. A natural question to ask is whether the map is equivariant under the diffeomorphism group of the underlying manifold. However, any description of the map relies heavily on `little round $\varepsilon$-balls' and so only actions by isometry have any chance at equivariance. The goal of this talk is to give a more natural definition of the scanning map and show that diffeomorphism equivariance is an easy consequence.
  • Junior Geometry and Topology Seminar
24 May 2012
12:00
Rosalinda Juer
Abstract
The mid 1980s saw a shift in the nature of the relationship between mathematics and physics. Differential equations and geometry applied in a classical setting were no longer the principal players; in the quantum world topology and algebra had come to the fore. In this talk we discuss a method of classifying 2-dim invertible Klein topological quantum field theories (KTQFTs). A key object of study will be the unoriented cobordism category $\mathscr{K}$, whose objects are closed 1-manifolds and whose morphisms are surfaces (a KTQFT is a functor $\mathscr{K}\rightarrow\operatorname{Vect}_{\mathbb{C}}$). Time permitting, the open-closed version of the category will be considered, yielding some surprising results.
  • Junior Geometry and Topology Seminar
17 May 2012
12:00
Markus Röser
Abstract

In this talk our aim is to explain why there exist hyperkähler metrics on the cotangent bundles and on coadjoint orbits of complex Lie groups. The key observation is that both the cotangent bundle of $G^\mathbb C$ and complex coadjoint orbits can be constructed as hyperkähler quotients in an infinite-dimensional setting: They may be identified with certain moduli spaces of solutions to Nahm's equations, which is a system of non-linear ODEs arising in gauge theory. 

In the first half we will describe the hyperkähler quotient construction, which can be viewed as a version of the Marsden-Weinstein symplectic quotient for complex symplectic manifolds. We will then introduce Nahm's equations and explain how their moduli spaces of solutions may be related to the above Lie theoretic objects.

  • Junior Geometry and Topology Seminar
10 May 2012
12:00
Laura Schaposnik
Abstract
We shall dedicate the first half of the talk to introduce classical Higgs bundles and describe the fibres of the corresponding Hitchin fibration in terms of spectral data. Then, we shall define principal Higgs bundles and look at some examples. Finally, we consider the particular case of $SL(2,R)$, $U(p,p)$ and $Sp(2p,2p)$ Higgs bundles and study their spectral data. Time permitting, we shall look at different applications of our new methods.
  • Junior Geometry and Topology Seminar

Pages