Extending work of Klyachko, we give a combinatorial description of pure equivariant sheaves on a nonsingular projective toric variety X and construct moduli spaces of such sheaves. These moduli spaces are explicit and combinatorial in nature. Subsequently, we consider the moduli space M of all Gieseker stable sheaves on X and describe its fixed point locus in terms of the moduli spaces of pure equivariant sheaves on X. Using torus localisation, one can then compute topological invariants of M. We consider the case X=S is a toric surface and compute generating functions of Euler characteristics of M. In case of torsion free sheaves, one can study wall-crossing phenomena and in case of pure dimension 1 sheaves one can verify, in examples, a conjecture of Katz relating Donaldson--Thomas invariants and Gopakumar--Vafa invariants.