I will briefly describe a differential geometric construction of Hitchin's projectively flat connection in the Verlinde bundle, over Teichm\"uller space, formed by the Hilbert spaces arising from geometric quantization of the moduli space of flat connections on a Riemann surface. We will work on a general symplectic manifold sharing certain properties with the moduli space. Toeplitz operators enter the picture when quantizing classical observables, but they are also closely connected with the notion of deformation quantization. Furthermore, through an intimate relationship between Toeplitz operators, the Hitchin connection manifests itself in the world of deformation quantization as a connection on formal functions. As we shall see, this formal Hitchin connection can be used to construct a deformation quantization, which is independent of the Kähler polarization used for quantization. In the presence of a symmetry group, this deformation quantization can (under certain cohomological conditions) be constructed invariantly. The talk presents joint work with J. E. Andersen.