Cube Complexes with Coupled Links (CLCC) are a special family of non-positively curved cube complexes that are constructed by specifying what the links of their vertices should be. In this talk I will introduce the construction of CLCCs and try to motivate it by explaining how one can use information about the local geometry of a cube complex to deduce global properties of its fundamental group (e.g. hyperbolicity and cohomological dimension). On the way, I will also explain what fly maps are and how to use them to deduce that a CAT(0) cube complex is hyperbolic.

# Past Junior Topology and Group Theory Seminar

We will discuss topological and algebraic aspects of splittings of free groups. In particular we will look at the core of two splittings in terms of CAT(0) cube complexes and systems of surfaces in a doubled handlebody.

CAT(0) spaces are defined as having triangles that are no fatter than Euclidean triangles, so it is no surprise that under special conditions you find pieces of the Euclidean plane appearing in CAT(0) spaces. What is surprising though is how weak these special conditions seem to be. I will present some well known results of this phenomenon, along with detailed sketch proofs.

I will talk about the properties of algebraic integers that can arise as stretch factors of pseudo-Anosoc maps. I will mention a conjecture of Fried on which numbers supposedly arise and Thurston’s theorem that proves a similar result in the context of automorphisms of free groups. Then I will talk about recent developments on the Fried conjecture namely, every Salem number has a power arising as a stretch factor.

I will discuss a wonderful structure theorem for finitely generated group containing a codimension one polycyclic-by-finite subgroup, due to Martin Dunwoody and Eric Swenson. I will explain how the theorem is motivated by the torus theorem for 3-manifolds, and examine some of the consequences of this theorem.

Stable commutator length (scl) is a well established invariant of group elements g (write scl(g)) and has both geometric and algebraic meaning.

It is a phenomenon that many classes of non-positively curved groups have a gap in stable commutator length: For every non-trivial element g, scl(g) > C for some C>0. Such gaps may be found in hyperbolic groups, Baumslag-solitair groups, free products, Mapping class groups, etc.

However, the exact size of this gap usually unknown, which is due to a lack of a good source of “quasimorphisms”.

In this talk I will construct a new source of quasimorphisms which yield optimal gaps and show that for Right-Angled Artin Groups and their subgroups the gap of stable commutator length is exactly 1/2. I will also show this gap for certain amalgamated free products.

In a recent paper Friedl, Zentner and Livingston asked when a sum of torus knots is concordant to an alternating knot. After a brief analysis of the problem in its full generality, I will describe some effective obstructions based on Floer type theories.

Warped cones are infinite metric spaces that are associated with actions by homeomorphisms on metric spaces. In this talk I will try to explain why the coarse geometry of warped cones can be seen as an invariant of the action and what it can tell us about the acting group.

I will give a survey of known results about when two RAAGs are quasi-isometric, and will then describe a visual graph of groups decomposition of a RAAG (its JSJ tree of cylinders) that can often be used to determine whether or not two RAAGs are quasi-isometric.

If $G$ is an irreducible lattice in a semisimple Lie group, every action of $G$ on a tree has a global fixed point. I will give an elementary discussion of Y. Shalom's proof of this result, focussing on the case of $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$. Emphasis will be placed on the geometric aspects of the proof and on the importance of reduced cohomology, while other representation theoretic/functional analytic tools will be relegated to a couple of black boxes.