Forthcoming events in this series


Thu, 14 Nov 2019

16:00 - 17:00
L4

Viscosity solutions for controlled McKean-Vlasov jump-diffusions

Matteo Burzoni
(Oxford University)
Abstract

We study a class of non linear integro-differential equations on the Wasserstein space related to the optimal control of McKean-Vlasov jump-diffusions. We develop an intrinsic notion of viscosity solutions that does not rely on the lifting to an Hilbert space and prove a comparison theorem for these solutions. We also show that the value function is the unique viscosity solution. Based on a joint work with V. Ignazio, M. Reppen and H. M. Soner

Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

Thu, 31 Oct 2019

16:00 - 17:00
L4

On a mean-field optimal control problem.

Vardan Voskanyan
(Centro de Matemática da Universidade de Coimbra)
Abstract

In this talk we consider a mean field optimal control problem with an aggregation-diffusion constraint, where agents interact through a potential, in the presence of a Gaussian noise term. Our analysis focuses on a PDE system coupling a Hamilton-Jacobi and a Fokker-Planck equation, describing the optimal control aspect of the problem and the evolution of the population of agents, respectively. We will discuss the existence and regularity of solutions for the aforementioned system. We notice this model is in close connection with the theory of mean-field games systems. However, a distinctive feature concerns the nonlocal character of the interaction; it affects the drift term in the Fokker-Planck equation as well as the Hamiltonian of the system, leading to new difficulties to be addressed.

Thu, 17 Oct 2019

14:00 - 15:00
L5

Deep Learning: Asymptotics and Financial Applications

Justin Sirignano
(University of Illinois)
Abstract

Deep learning has revolutionized image, text, and speech recognition. Motivated by this success, there is growing interest in developing deep learning methods for financial applications. We will present some of our recent results in this area, including deep learning models of high-frequency data. In the second part of the talk, we prove a law of large numbers for single-layer neural networks trained with stochastic gradient descent. We show that, depending upon the normalization of the parameters, the law of large numbers either satisfies a deterministic partial differential equation or a random ordinary differential equation. Using similar analysis, a law of large numbers can also be established for reinforcement learning (e.g., Q-learning) with neural networks. The limit equations in each of these cases are discussed (e.g., whether a unique stationary point and global convergence can be proven).  

Thu, 10 Oct 2019

16:00 - 17:00
L4

Universal Approximation with Deep Narrow Networks

Patrick Kidger
(University of Oxford)
Abstract

The classical Universal Approximation Theorem certifies that the universal approximation property holds for the class of neural networks of arbitrary width. Here we consider the natural `dual' theorem for width-bounded networks of arbitrary depth, for a broad class of activation functions. In particular we show that such a result holds for polynomial activation functions, making this genuinely different to the classical case. We will then discuss some natural extensions of this result, e.g. for nowhere differentiable activation functions, or for noncompact domains.
 

Thu, 20 Jun 2019

13:00 - 14:00
L3

Spectral methods for certain inverse problems on graphs and time series data

Mihai Cucuringu
(Statistics Oxford University)
Further Information

We study problems that share an important common feature: they can all be solved by exploiting the spectrum of their corresponding graph Laplacian. We first consider a classic problem in data analysis and machine learning, of establishing a statistical ranking of a set of items given a set of inconsistent and incomplete pairwise comparisons. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose least-squares solution can be approximated by either a spectral or a semidefinite programming relaxation, and consider an application to detecting leaders and laggers in financial multivariate time series data. An instance of the group synchronization problem over Z_2 with anchor information is broadly applicable to settings where one has available a sparse signal such as positive or negative news sentiment for a subset of nodes, and would like to understand how the available measurements propagate to the remaining nodes of the network. We also present a simple spectral approach to the well-studied constrained clustering problem, which captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. This line of work extends to the setting of clustering signed networks and correlation clustering, where the edge weights between the nodes of the graph may take either positive or negative values, for which we provide theoretical guarantees in the setting of a signed stochastic block model and numerical experiments for financial correlation matrices. Finally, we discuss a spectral clustering algorithm for directed graphs based on a complex-valued representation of the adjacency matrix, motivated by the application of extracting cluster-based lead-lag relationships in time series data.
 

Thu, 23 May 2019

13:00 - 14:00
L4

Monotone Solutions to the Moral Hazard Problem

Hanqing Jin
(Oxford University)
Abstract

We investigate monotone solutions of the moral hazard problems without the monotone likelihood ratio property. The solutions are explicitly characterised by a concave envelope relaxation approach for a two-action model in which the principal is risk neutral or exhibits constant absolute risk aversion.  

Thu, 09 May 2019

13:00 - 14:00
L4

Talks by Dphil students

Theerawat Bhudisaksang & Yufei Zhang (DPhil students)
Abstract

Theerawat Bhudisaksang
----------------------

Adaptive robust control with statistical learning

We extend the adaptive robust methodology introduced in Bielecki et al. and propose a continuous-time version of their approach. Bielecki et al. consider a model in which the distribution of the underlying (observable) process depends on unknown parameters and the agent uses observations of the process to estimate the parameter values. The model is made robust to misspecification because the agent employs a set of ambiguity measures that contains measures where the parameter are inside a confidence region of their estimator. In our extension, we construct the set of ambiguity measures such that each probability measure in the set has a semimartingale characterisation lies in a restricted set. Finally, we prove the dynamic programming principle of the adaptive robust control in continuous time problem using measurable selection theorems, and we show that the value function can be characterised as the solution of a non-linear partial differential equation.

Yufei Zhang
-----------

A neural network based policy iteration algorithm with global convergence of values and controls for stochastic games on domains

In this talk, we propose a class of neural network based numerical schemes for solving semi-linear Hamilton-Jacobi-Bellman-Isaacs (HJBI) boundary value problems which arise naturally from exit time problems of diffusion processes with controlled drift. We exploit a policy iteration to reduce the semilinear problem into a sequence of linear Dirichlet problems, which are subsequently approximated by a multilayer feedforward neural network ansatz. We establish that the numerical solutions converge globally in the H^2-norm, and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration for the HJBI equation. Moreover, we construct the optimal feedback controls from the numerical value functions and deduce convergence. The numerical schemes and convergence results are then extended to HJBI boundary value problems corresponding to controlled diffusion processes with oblique boundary reflection. Numerical experiments on the stochastic Zermelo navigation problem are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method. 
 

Thu, 02 May 2019

13:00 - 14:00
L4

A class of stochastic games and moving free boundary problems

Renyuan Xu
(Berkeley)
Abstract

Stochastic control problems are closely related to free boundary problems, where both the underlying fully nonlinear PDEs and the boundaries separating the action and waiting regions are integral parts of the problems. In this talk, we will propose a class of stochastic N-player games and show how the free boundary problems involve moving boundaries due to the additional game nature. We will provide explicit Nash equilibria by solving a sequence of Skorokhod problems. For the special cases of resource allocation problems, we will show how players change their strategies based on different network structures between players and resources. We will also talk about the insights from a sharing economy perspective. This talk is based on a joint work with Xin Guo (UC Berkeley) and Wenpin Tang (UCLA).

Thu, 07 Mar 2019

13:00 - 14:00
L4

Optimal execution with rough path signatures

Imanol Perez
(Oxford University)
Further Information


 

Abstract

We consider a well-studied optimal execution problem under little assumptions on the underlying midprice process. We do so by using signatures from rough path theory, that allows converting the original problem into a more computationally tractable problem. We include a few numerical experiments where we show that our methodology is able to retrieve the theoretical optimal execution speed for several problems studied in the literature, as well as some cases not included in the literatture. We also study some estensions of our framework to other settings.
 

Thu, 14 Feb 2019

13:00 - 14:00
L4

Pathwise functional portfolio generation and optimal transport

Micheal Monoyios
(Oxford University)
Further Information

We make precise a remarkable connection, first observed by Pal and Wong (2016) and further analysed in the doctoral thesis of Vervuurt (2016), between functionally generated investments and optimal transport, in a model-free discrete-time financial market. A functionally generated portfolio (FGP) computes the investment in each stock through the prism of the super-differential of the logarithm of a concave function (the generating function of the FGP) of the market weight vector. Such portfolios have been shown to outperform the market under suitable conditions. Here, in our pathwise discrete-time scenario, we equate the convex-analytic cyclical monotonicity property characterising super-differentials, with a $c$-cyclical monotonicity property of the unique Monge solution of an appropriately constructed optimal transport problem with cost function $c$, which transfers the market portfolio distribution to the FGP distribution. Using the super-differential characterisation of functional investments, we construct optimal transport problems for both traditional (multiplicative) FGPs, and an ``additive'' modification introduced by Karatzas and Ruf (2017), featuring the same cost function in both cases, which characterise the functional investment. In the multiplicative case, the construction differs from Pal and Wong (2016) and Vervuurt (2016), who used a ``multiplicative'' cyclical monotonicity property, as opposed to the classical cyclical monotonicity property used here.
  
We establish uniqueness of the solution to the relevant optimal transport problem, elevating the connection observed by Pal and Wong (2016) to an exact equivalence between optimal transport and functional generation. We explore ramifications, including pathwise discrete-time master equations for the evolution of the relative wealth of the investment when using the market portfolio as numeraire. We take the pathwise continuous time limit, assuming continuous paths which admit well-defined quadratic variation, to establish model-free continuous-time master equations for both types of functionally generated investment, providing an alternative derivation to the recent proof of Schied et al (2018) of the master equation for multiplicative FGPs, as well as an extension to the case of additive functionally generated trading strategies.

Thu, 24 Jan 2019

13:00 - 14:00
L4

Talks by Dphil students

Tanut Treetanthiploet and Julien Vaes (Dphil students)
Abstract

Tanut Treetanthiploet
---------------------
Exploration vs Exploitation under Statistical Uncertainty

The exploration vs Exploitation trade-off can be quantified and studied through the notion of statistical uncertainty using the theory of nonlinear expectations. The dynamic allocation problem of multi-armed bandits will be discussed. In the case of a finite state space in discrete time, we can describe the value function in terms of the solution to a discrete BSDE and obtain a similar notion to the Bellman equation. We also give an approximation scheme to evaluate decisions in the simple setting.


Julien Vaes
-----------
Optimal Execution Strategy Under Price and Volume Uncertainty

In the seminal paper on optimal execution of portfolio transactions, Almgren and Chriss define the optimal trading strategy to liquidate a fixed volume of a single security under price uncertainty. Yet there exist situations, such as in the power market, in which the volume to be traded can only be estimated and becomes more accurate when approaching a specified delivery time. To meet the need of efficient strategies in these situations, we have developed  a model that accounts for volume uncertainty and show that a risk-averse trader has benefit in delaying their trades. We show that the optimal strategy is a trade-off between early and late trades to balance risk associated to both price and volume. With the incorporation of a risk term for the volume to trade, the static optimal strategies obtained with our model avoid the explosion in the algorithmic complexity associated to dynamic programming solutions while yielding to competitive performance.

 

Thu, 29 Nov 2018

13:00 - 14:00
L4

OPTIMAL CONTROL UNDER CONTROLLED-LOSS CONSTRAINTS VIA REACHABILITY APPROACH AND COMPACTIFICATION

Geraldine Bouveret
(Smith School of Enterprise and the Environment)
Abstract

We study a family of optimal control problems under a set of controlled-loss constraints holding at different deterministic dates. The characterization of the associated value function by a Hamilton-Jacobi-Bellman equation usually calls for additional strong assumptions on the dynamics of the processes involved and the set of constraints. To treat this problem in absence of those assumptions, we first convert it into a state-constrained stochastic target problem and then apply a level-set approach to describe the reachable set. With this approach, the state constraints can be managed through an exact penalization technique. However, a new set of state and control variables enters the definition of this stochastic target problem. In particular, those controls are unbounded. A “compactification” of the problem is then performed. (joint work with Athena Picarelli)
 

Thu, 08 Nov 2018

13:00 - 14:00
L4

Talks by graduate students

Donovan Platt and Yufei Zhang (DPhil students)
(Oxford University)
Abstract

Donovan Platt
-------------
Economic Agent-Based Model Calibration

Interest in agent-based models of financial markets and the wider economy has increased consistently over the last few decades, in no small part due to their ability to reproduce a number of empirically-observed stylised facts that are not easily recovered by more traditional modelling approaches. Nevertheless, the agent-based modelling paradigm faces mounting criticism, focused particularly on the rigour of current validation and calibration practices, most of which remain qualitative and stylised fact-driven. While the literature on quantitative and data-driven approaches has seen significant expansion in recent years, most studies have focused on the introduction of new calibration methods that are neither benchmarked against existing alternatives nor rigorously tested in terms of the quality of the estimates they produce. We therefore compare a number of prominent ABM calibration methods, both established and novel, through a series of computational experiments in an attempt to determine the respective strengths and weaknesses of each approach and the overall quality of the resultant parameter estimates. We find that Bayesian estimation, though less popular in the literature, consistently outperforms frequentist, objective function-based approaches and results in reasonable parameter estimates in many contexts. Despite this, we also find that agent-based model calibration techniques require further development in order to definitively calibrate large-scale models.

Yufei Zhang
-----------
A penalty scheme and policy iteration for stochastic hybrid control problems with nonlinear expectations

We propose a penalty method for mixed optimal stopping and control problems where the objective is evaluated
by a nonlinear expectation. The solution and free boundary of an associated HJB variational inequality are constructed from a sequence
of penalized equations, for which the penalization error is estimated. The penalized equation is then discretized by a class of semi-implicit
monotone approximations. We further propose an efficient iterative algorithm with local superlinear convergence for solving the discrete
equation. Numerical experiments are presented for an optimal investment problem under ambiguity to demonstrate the effectiveness of
the new schemes.  Finally, we extend the penalty schemes to solve stochastic hybrid control problems involving impulse controls.

Thu, 18 Oct 2018

13:00 - 14:00
L4

Dynamic clearing and contagion in an Eisenberg-Noe framework

Zachary Feinstein
(Washington University in St. Louis)
Abstract

We will consider an extension of the Eisenberg-Noe model of financial contagion to allow for time dynamics in both discrete and continuous time. Mathematical results on existence and uniqueness of firm wealths under discrete and continuous-time will be provided. The financial implications of time dynamics will be considered, with focus on how the dynamic clearing solutions differ from those of the static Eisenberg-Noe model.
 

Fri, 01 Jun 2018

13:00 - 14:00
L6

Multilevel Monte Carlo for Estimating Risk Measures

Mike Giles
Abstract

Joint work with Abdul-Lateef Haji-Ali

This talk will discuss efficient numerical methods for estimating the probability of a large portfolio loss, and associated risk measures such as VaR and CVaR. These involve nested expectations, and following Bujok, Hambly & Reisinger (2015) we use the number of samples for the inner conditional expectation as the key approximation parameter in the Multilevel Monte Carlo formulation. The main difference in this case is the indicator function in the definition of the probability. Here we build on previous work by Gordy & Juneja (2010) who analyse the use of a fixed number of inner samples, and Broadie, Du & Moallemi (2011) who develop and analyse an adaptive algorithm. I will present the algorithm, outline the main theoretical results and give the numerical results for a representative model problem. I will also discuss the extension to real portfolios with a large number of options based on multiple underlying assets.

Fri, 18 May 2018

13:00 - 14:00
L6

A probabilistic approach to non-parametric local volatility

Martin Tegner
Abstract

The local volatility model is a celebrated model widely used for pricing and hedging financial derivatives. While the model’s main appeal is its capability of reproducing any given surface of observed option prices—it provides a perfect fit—the essential component of the model is a latent function which can only be unambiguously determined in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimates as result. We seek to look at the calibration problem in a probabilistic framework with a nonparametric approach based on Gaussian process priors. This immediately gives a way of encoding prior believes about the local volatility function, and a hypothesis model which is highly flexible whilst being prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate, we seek to draw posterior inference on the distribution over local volatility to better understand the uncertainty attached with the calibration. Further, we seek to understand dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this gives us means of inferring predictive distributions not only locally, but also for entire surfaces forward in time.

Fri, 04 May 2018

13:00 - 14:00
L6

Talks by Phd Students

Leandro Sánchez Betancourt and Jasdeep Kalsi
Abstract

Leandro Sánchez Betancourt
--------------------------
The Cost of Latency: Improving Fill Ratios in Foreign Exchange Markets

Latency is the time delay between an exchange streaming market data to a trader, the trader processing information and deciding to trade, and the exchange receiving the order from the trader.  Liquidity takers  face  a  moving target problem as a consequence of their latency in the marketplace -- they send marketable orders that aim at a price and quantity they observed in the LOB, but by the time their order was processed by the Exchange, prices (and/or quantities) may have worsened, so the  order  cannot  be  filled. If liquidity taking orders can walk the limit order book (LOB), then orders that arrive late may still be filled at worse prices. In this paper we show how to optimally choose the discretion of liquidity taking orders to walk the LOB. The optimal strategy balances the tradeoff between the costs of walking the LOB and targeting  a desired percentage of filled orders over a period of time.  We employ a proprietary data set of foreign exchange trades to analyze the performance of the strategy. Finally, we show the relationship between latency and the percentage of filled orders, and showcase the optimal strategy as an alternative investment to reduce latency.

Jasdeep Kalsi
-------------
An SPDE model for the Limit Order Book

I will introduce a microscopic model for the Limit Order Book in a static setting i.e. in between price movements. Here, order flow at different price levels is given by Poisson processes which depend on the relative price and the depth of the book. I will discuss how reflected SPDEs can be obtained as scaling limits of such models. This motivates an SPDE with reflection and a moving boundary as a model for the dynamic Order Book. An outline for how to prove existence and uniqueness for the equation will be presented, as well as some simple simulations of the model.

Thu, 08 Mar 2018

14:30 - 15:30
L5

tba

Thaleia Zariphopoulou
(University of Texas at Austin)
Fri, 23 Feb 2018

13:00 - 14:00
L6

Multilevel Monte Carlo for Estimating Risk Measures

Mike Giles
Abstract

This talk will discuss efficient numerical methods for estimating the
probability of a large portfolio loss, and associated risk measures such
as VaR and CVaR.  These involve nested expectations, and following
Bujok, Hambly & Reisinger (2015) we use the number of samples for the
inner conditional expectation as the key approximation parameter in the
Multilevel Monte Carlo formulation.  The main difference in this case is
the indicator function in the definition of the probability. Here we
build on previous work by Gordy & Juneja (2010) who analyse the use of a
fixed number of inner samples , and Broadie, Du & Moallemi (2011) who
develop and analyse an adaptive algorithm.  I will present the
algorithm, outline the main theoretical results and give the numerical
results for a representative model problem.  I will also discuss the
extension to real portfolios with a large number of options based on
multiple underlying assets.

Joint work with Abdul-Lateef Haji-Ali

Fri, 09 Feb 2018

13:00 - 14:00
L6

State constrained optimal control problems via reachability approach.

Athena Picarelli
(Imperial College, London)
Abstract

This work deals with a class of stochastic optimal control problems in the presence of state constraints. It is well known that for such problems the value function is, in general, discontinuous, and its characterisation by a Hamilton-Jacobi equation requires additional assumptions involving an interplay between the boundary of the set of constraints and the dynamics
of the controlled system. Here, we give a characterization of the epigraph of the value function without assuming the usual controllability assumptions. To this end, the stochastic optimal control problem is first translated into a state-constrained stochastic target problem. Then a level-set approach is used to describe the backward reachable sets of the new target problem. It turns out that these backward reachable sets describe the value function. The main advantage of our approach is that it allows us to easily handle the state constraints by an exact penalisation. However, the target problem involves a new state variable and a new control variable that is unbounded.
 

Fri, 26 Jan 2018

13:00 - 14:00
L6

Using FX Volatility Skews to Assess the Implied Probability of Brexit, Trump Election, and Hard Brexit

Iain Clark
(Efficient Frontier Consulting)
Abstract


In the 12 months from the middle of June 2016 to the middle of June 2017, a number of events occurred in a relatively short period of time, all of which either had, or had the potential to have,  a considerably volatile impact upon financial markets. The events referred to here are the Brexit  referendum (23 June 2016), the US election (8 November 2016), the 2017 French elections (23 April and 7 May 2017) and the surprise 2017 UK parliamentary election (8 June 2017). 
All of these events - the Brexit referendum and the Trump election in particular - were notable both for their impact upon financial markets after the event and the degree to which the markets failed to anticipate these events. A natural question to ask is whether these could have been predicted, given information freely available in the financial markets beforehand. In this talk, we focus on market expectations for price action around Brexit and the Trump election, based on information available in the traded foreign exchange options market. We also investigate the horizon date of 30 March 2019, when the two year time window that started with the Article 50 notification on 29 March 2017 will terminate.
Mathematically, we construct a mixture model corresponding to two scenarios for the GBPUSD exchange rate after the referendum vote, one scenario for “remain” and one for “leave”. Calibrating this model to four months of market data, from 24 February to 22 June 2016, we find that a “leave” vote was associated with a predicted devaluation of the British pound to approximately 1.37 USD per GBP, a 4.5% devaluation, and quite consistent with the observed post-referendum exchange rate move down from 1.4877 to 1.3622. We find similar predictive power for USDMXN in the case of the 2016 US presidential election. We argue that we can apply the same bimodal mixture model technique to construct two states of the world corresponding to soft Brexit (continued access to the single market) and hard Brexit (failure of negotiations in this regard).
 

Fri, 01 Dec 2017

13:00 - 14:00
L6

Model-independent pricing with Insider information: a Skorokhod Embedding approach.

Alexander Cox (University of Bath)
Abstract

In this paper, we consider the pricing and hedging of a financial derivative for an insider trader, in a model-independent setting. In particular, we suppose that the insider wants to act in a way which is independent of any modelling assumptions, but that she observes market information in the form of the prices of vanilla call options on the asset. We also assume that both the insider’s information, which takes the form of a set of impossible paths, and the payoff of the derivative are time-invariant. This setup allows us to adapt recent work of Beiglboeck, Cox, and Huesmann [BCH16] to prove duality results and a monotonicity principle, which enables us to determine geometric properties of the optimal models. Moreover, we show that this setup is powerful, in that we are able to find analytic and numerical solutions to certain pricing and hedging problems. (Joint with B. Acciaio and M. Huesmann)

Fri, 17 Nov 2017

13:00 - 14:00
L6

On pathwise pricing-hedging duality in continuous time

David Proemel
Abstract

We discuss pathwise pricing-hedging dualities in continuous time and on a frictionless market consisting of finitely many risky assets with continuous price trajectories.

Fri, 03 Nov 2017

13:00 - 14:00
L6

tba

Rita Maria del Rio Chanona and Johannes Wiesel
Abstract

Rita Maria del Rio Chanona:

Global financial contagion on a Multiplex Network

We explore the global financial system, in particular the risk of global financial contagion through network theory. Although there is extensive literature on contagion in networks, we argue that it is important to consider different channels of contagion. Therefore we deem into the multilayer framework, where nodes are countries and each layer represents a different type of financial obligation. The multiplex network is built using data provided by collaborators in the IMF. We study contagion with a percolation model and conclude that financial shocks can be amplified considerably when the multilayer structure is taken into account.


Johannes Wiesel:

Robust Superhedging vs Robust Statistics

In this talk I try to reconcile the different understanding of robustness in mathematical finance and statistics. Motivated by recent advances in the estimation of risk measures, I present estimators for the superhedging price of a claim given a history of observed prices. I discuss weak efficiency and convergence speed of these estimators. Besides I explain how to apply classical notions of sensitivity for the estimation procedure. This talk is based on ongoing work with Jan Obloj.

 

Fri, 20 Oct 2017

13:00 - 14:00
L6

Talks by Phd Students

Christoph Siebenbrunner and Andreas Sojmark
Abstract

Christoph Siebenbrunner:

Clearing Algorithms and Network Centrality

I show that the solution of a standard clearing model commonly used in contagion analyses for financial systems can be expressed as a specific form of a generalized Katz centrality measure under conditions that correspond to a system-wide shock. This result provides a formal explanation for earlier empirical results which showed that Katz-type centrality measures are closely related to contagiousness. It also allows assessing the assumptions that one is making when using such centrality measures as systemic risk indicators. I conclude that these assumptions should be considered too strong and that, from a theoretical perspective, clearing models should be given preference over centrality measures in systemic risk analyses.


Andreas Sojmark:

An SPDE Model for Systemic Risk with Default Contagion

In this talk, I will present a structural model for systemic risk, phrased as an interacting particle system for $N$ financial institutions, where each institution is removed upon default and this has a contagious effect on the rest of the system. Moreover, the financial instituions display herding behavior and they are exposed to correlated noise, which turns out to be an important driver of the contagion mechanism. Ultimately, the motivation is to provide a clearer connection between the insights from dynamic mean field models and the detailed study of contagion in the (mostly static) network-based literature. Mathematically, we prove a propagation of chaos type result for the large population limit, where the limiting object is characterized as the unique solution to a nonlinear SPDE on the positive half-line with Dirichlet boundary. This is based on joint work with Ben Hambly and I will also point out some interesting future directions, which are part of ongoing work with Sean Ledger.

Fri, 09 Jun 2017

13:00 - 14:00
L6

Structure of martingale transports in finite dimensions

Pietro Siorpaes
(Imperial College)
Abstract


Martingale optimal transport is a variant of the classical optimal transport problem where a martingale constraint is imposed on the coupling. In a recent paper, Beiglböck, Nutz and Touzi show that in dimension one there is no duality gap and that the dual problem admits an optimizer. A key step towards this achievement is the characterization of the polar sets of the family of all martingale couplings. Here we aim to extend this characterization to arbitrary finite dimension through a deeper study of the convex order

 

Fri, 19 May 2017

13:00 - 14:00
L6

Trading ethics for quants

Lyndon Drake
(University of Oxford Faculty of Theology and Religion)
Abstract


I spent a number of years trading government bonds and interest-rate derivatives for Barclays Capital. This included the period of the financial crisis, and I was a colleague of some of the Barclays traders charged with fraud related to LIBOR rate manipulation. I will present a some examples of common trading scenarios, and some of the ethical issues these might raise for quants.
 

Fri, 10 Mar 2017

13:00 - 14:00
L6

Calibration and Monte Carlo pricing under a four-factor hybrid local-stochastic volatility model

Matthieu Mariapragassam and Andrei Cozma
Abstract

The efficient pricing and hedging of vanilla and exotic foreign exchange options requires an adequate model that takes into account both the local and the stochastic features of the volatility dynamics. In this joint work, we put forward a four-factor hybrid local-stochastic volatility (LSV) model that combines state-of-the-art dynamics for the exchange rate with stochastic dynamics for the domestic and foreign short rates, and provide a consistent and self-contained calibration and pricing framework.
For the calibration, we propose a novel and generic algorithm that builds on the particle method of Guyon and Labordere. We combine it with new variance reduction techniques to accelerate convergence and use control variates derived from a pure local volatility model, the stochastic short rates and the two-factor Heston-type LSV model. Our numerical experiments show a dramatic variance reduction that allows us to calibrate the four-factor model at almost no extra computational cost. The method can be applied to a large class of hybrid LSV models and is not restricted to our particular choice of the diffusion.
For the pricing, we propose a Monte Carlo simulation scheme that combines the full truncation Euler (FTE) scheme for the stochastic volatility and the stochastic short rates with the log-Euler scheme for the exchange rate. We find a lower bound on the explosion time of exponential moments of FTE approximations, and prove the strong convergence of the exchange rate approximations and the convergence of Monte Carlo estimators for a number of vanilla and exotic options. We then carry out numerical experiments to justify our choice of model and demonstrate convergence.
 

Fri, 24 Feb 2017

13:00 - 14:00
L6

Second Year DPhil Student Talks Yixuan Wang and Marco Pangallo

Abstract


Speaker: Yixuan Wang
Titile: Minimum resting time with market orders
Abstract:  Regulators have been discussing possible rules to control high frequency trading and decrease market speed, and minimum resting time is one of them. We develop a simple mathematical model, and derive an asymptotic expression of the expected PnL, which is also the performance criteria that a market maker would like to maximize by choosing the optimal depth at which she posts the limit order. We investigate the comparative statistics of the optimal depth with each parameters, an in particular the comparative statistics show that the minimum resting time will decrease the market liquidity, forcing the market makers to post limit orders of volume 1.


Speaker: Marco Pangallo
Title: Does learning converge in generic games?
Abstract: In game theory, learning has often been proposed as a convincing method to achieve coordination on an equilibrium. But does learning converge, and to what? We start investigating the drivers of instability in the simplest possible non-trivial setting, that is generic 2-person, 2-strategy normal form games. In payoff matrices with a unique mixed strategy equilibrium the players may follow the best-reply cycle and fail to converge to the Nash Equilibrium (NE): we rather observe limit cycles or low-dimensional chaos. We then characterize the cyclic structure of games with many moves as a combinatorial problem: we quantify exactly how many best-reply configurations give rise to cycles or to NE, and show that acyclic (e.g. coordination, potential, supermodular) games become more and more rare as the number of moves increases (a fortiori if the payoffs are negatively correlated and with more than two players).  In most games the learning dynamics ends up in limit cycles or high-dimensional chaotic attractors, preventing the players to coordinate. Strategic interactions would then be governed by learning in an ever-changing environment, rather than by rational and fully-informed equilibrium thinking.
Collaborators: J. D. Farmer, T. Galla, T. Heinrich, J. Sanders

Fri, 10 Feb 2017

13:00 - 14:00
L6

On optimal Skorokhod embedding

Gaoyue Guo
Abstract

The Skorokhod embedding problem aims to represent a given probability measure on the real line as the distribution of Brownian motion stopped at a chosen stopping time. In this talk, we consider an extension of the weak formulation of the optimal Skorokhod embedding problem. Using the classical convex duality approach together with the optimal stopping theory, we establish some duality. Moreover, based on the duality, we provide an alternative proof of the monotonicity principle proved by Beiglbock, Cox and Huesmann.