Forthcoming events in this series


Thu, 04 Dec 2008
16:00
L3

Exceptional sets for Diophantine inequalities

Trevor Wooley
(Bristol)
Abstract

We report on work joint with Scott Parsell in which estimates are obtained for the set of real numbers not closely approximated by a given form with real coefficients. "Slim"

technology plays a role in obtaining the sharpest estimates.

Thu, 13 Nov 2008
16:00
L3

On the density of solutions to Diophantine equations.

Oscar Marmon
(Chalmers University of Technology)
Abstract

In a paper from 1994, 'The density of rational points on non-singular hypersurfaces', Heath-Brown developed a `multi-dimensional q-analogue'

of van der Corput's method of exponential sums, giving good bounds for the density of solutions to Diophantine equations in many variables. I will discuss this method and present some generalizations.

Thu, 06 Nov 2008
16:00
L3

"Annihilating Ideals for Class Groups of Number Fields"

David Solomon
(Kings College London)
Abstract

"Stickelberger's famous theorem (from 1890) gives an explicit ideal which annihilates the imaginary part of the class group of an abelian field as a module for the group-ring of the Galois group. In the 1980s Tate and Brumer proposed a generalisation of Stickelberger's Theorem (and his ideal) to other abelian extensions of number fields, the so-called `Brumer-Stark conjecture'.

I shall discuss some of the many unresolved issues connected with the annihilation of class groups of number fields. For instance, should the (generalised) Stickelberger ideal be the full annihilator, the Fitting ideal or what? And what can we say in the plus part (where Stickelberger's Theorem is trivial)?"

Thu, 23 Oct 2008
16:00
L3

The circle method with weights and Tschinkel's problem

Nic Niedermowwe
(Oxford)
Abstract

We show how the circle method with a suitably chosen Gaussian weight can be used to count unweighted zeros of polynomials. Tschinkel's problem asks for the density of solutions to Diophantine equations with S-unit and integral variables.

Thu, 29 May 2008
16:00
L3

Elliptic curves with prime order

Antal Balog
(Budapest)
Abstract

Let E be an elliptic curve over the rationals. To get an asymptotic to the number of primes p

Thu, 22 May 2008
16:00
L3

Discrete analogues in harmonic analysis and the circle method

Lillian Pierce
(Princeton)
Abstract

Recently there has been increasing interest in discrete analogues of classical operators in harmonic analysis. Often the difficulties one encounters in the discrete setting require completely new approaches; the most successful current approaches are motivated by ideas from classical analytic number theory. This talk will describe a menagerie of new results for discrete analogues of operators ranging from twisted singular Radon transforms to fractional integral operators both on R^n and on the Heisenberg group H^n. Although these are genuinely analytic results, key aspects of the methods come from number theory, and this talk will highlight the roles played by theta functions, Waring's problem, the Hypothesis K* of Hardy and Littlewood, and the circle method.

Thu, 15 May 2008
16:00
L3

Rational points on curves of genus one

Bill Hart
(Warwick)
Abstract

We recall that an elliptic curve is a curve of genus one with a rational point on it. Certain algorithms for determining the structure of the group of rational points on an elliptic curve produce a whole set of curves of genus one and then require that we determine which of these curves has a rational point.

Unfortunately no algorithm which has been proved to terminate is known for doing this. Such an algorithm or proof would probably have profound implications for the study of elliptic curves and may shed light on the Birch and Swinnerton-Dyer conjecture.

This talk will be about joint work with Samir Siksek (Warwick) on the development of a new algorithmic criterion for determining that a given curve of genus one has no rational points. Both the theory behind the criterion and recent attempts to make the criterion computationally practical, will be detailed.

Thu, 24 Apr 2008
16:00
L3

Density of rational points on diagonal quartic surfaces

Ronald van Luijk
(Warwick)
Abstract

It is a wide open question whether the set of rational points on a smooth quartic surface in projective three-space can be nonempty, yet finite. In this talk I will treat the case of diagonal quartics V, which are given by: a x^4 + b y^4 + c z^4 + d w^4 = 0 for some nonzero rational a,b,c,d. I will assume that the product abcd is a square and that V contains at least one rational point P. I will prove that if none of the coordinates of P is zero, and P is not contained in one of the 48 lines on V, then the set of rational points on V is dense. This is based on joint work with Adam Logan and David McKinnon.