I will discuss the notion of badly approximable points and recent progress and problems in this area, including Schmidt's conjecture, badly approximable points on manifolds and real numbers badly approximable by algebraic numbers.

# Past Number Theory Seminar

I will describe some diophantine problems and results motivated by the analogy between powers of the modular curve and powers of the multiplicative group in the context of the Zilber-Pink conjecture.

We shall describe a new proof of the Mordell-Lang conjecture in positive characteristic, in the situation where the variety under scrutiny is a smooth subvariety of an abelian variety.

Our proof is based on the theory of semistable sheaves in positive characteristic, in particular on Langer's theorem that the Harder-Narasimhan filtration of sheaves becomes strongly semistable after a finite number of iterations of Frobenius pull-backs. Our proof produces a numerical upper-bound for the degree of the finite morphism from an isotrivial variety appearing in the statement of the Mordell-Lang conjecture. This upper-bound is given in terms of the Frobenius-stabilised slopes of the cotangent bundle of the variety.

Iwasawa theory is a powerful technique for relating the behaviour of arithmetic objects to the special values of L-functions. Iwasawa originally developed this theory in order to study the class groups of number fields, but it has since been generalised to many other settings. In this talk, I will discuss some new results in the Iwasawa theory of the symmetric square of a modular form. This is a joint project with Sarah Zerbes, and the main tool in this work is the Euler system of Beilinson-Flach elements, constructed in our earlier works with Kings and Lei.

Given a family $F$ of elliptic curves defined over $Q$, we are interested in the set $H(Y)$ of curves $E$ in $F$, of positive rank, and for which the minimum of the canonical heights of non-torsion rational points on $E$ is bounded by some parameter $Y$. When one can show that this set is finite, it is natural to investigate statistical properties of arithmetic objects attached to elliptic curves in the set $H(Y)$. We will describe some problems related to this, and will state some results in the case of families of quadratic twists of a fixed elliptic curve.

We discuss moments of $L$-functions in function fields, in the hyperelliptic ensemble, focusing on the fourth moment of quadratic Dirichlet $L$-functions at the critical point. We explain how to obtain an asymptotic formula with some of the secondary main terms.

A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.

Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.

I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.

I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.

The number of steps required by the Euclidean algorithm to find the greatest common divisor of a pair of integers $u,v$ with $1<u<v<n$ has been investigated since at least the 16th century, with an asymptotic for the mean number of steps being found independently by H. Heilbronn and J.D. Dixon in around 1970. It was subsequently shown by D. Hensley in 1994 that the number of steps asymptotically follows a normal distribution about this mean. Existing proofs of this fact rely on extensive effective estimates on the Gauss-Kuzman-Wirsing operator which run to many dozens of pages. I will describe how this central limit theorem can be obtained instead by a much shorter Tauberian argument. If time permits, I will discuss some related work on the number of steps for the binary Euclidean algorithm.

The prime number race is the competition between different coprime residue classes mod $q$ to contain the most primes, up to a point $x$ . Rubinstein and Sarnak showed, assuming two $L$-function conjectures, that as $x$ varies the problem is equivalent to a problem about orderings of certain random variables, having weak correlations coming from number theory. In particular, as $q \rightarrow \infty$ the number of primes in any fixed set of $r$ coprime classes will achieve any given ordering for $\sim 1/r!$ values of $x$. In this talk I will try to explain what happens when $r$ is allowed to grow as a function of $q$. It turns out that one still sees uniformity of orderings in many situations, but not always. The proofs involve various probabilistic ideas, and also some harmonic analysis related to the circle method. This is joint work with Youness Lamzouri.