Past Quantum Field Theory Seminar

22 May 2018
Christian Saemann

I will discuss a classical six-dimensional superconformal field theory containing a non-abelian tensor multiplet which we recently constructed in arXiv:1712.06623.

This theory satisfies many of the properties of the mysterious (2,0)-theory: non-abelian 2-form potentials, ADE-type gauge structure, reduction to Yang-Mills theory and reduction to M2-brane models. There are still some crucial differences to the (2,0)-theory, but our action seems to be a key stepping stone towards a potential classical formulation of the (2,0)-theory.

I will review in detail the underlying mathematics of categorified gauge algebras and categorified connections, which make our constructions possible.


  • Quantum Field Theory Seminar
24 April 2018
Alexander Schenkel

Algebraic quantum field theories (AQFTs) are traditionally described as functors that assign algebras (of observables) to spacetime regions. These functors are required to satisfy a list of physically motivated axioms such as commutativity of the multiplication for spacelike separated regions. In this talk we will show that AQFTs can be described as algebras over a colored operad. This operad turns out to be interesting as it describes an interpolation between non-commutative and commutative algebraic structures. We analyze our operad from a homotopy theoretical perspective and determine a suitable resolution that describes the commutative behavior up to coherent homotopies. We present two concrete constructions of toy-models of algebras over the resolved operad in terms of (i) forming cochains on diagrams of simplicial sets (or stacks) and (ii) orbifoldization of equivariant AQFTs.


  • Quantum Field Theory Seminar
27 February 2018
Cecile Huneau

In this talk, I will present the construction of a family of solutions to
vacuum Einstein equations which consist of an arbitrary number of high
frequency waves travelling in different directions. In the high frequency
limit, our family of solutions converges to a solution of Einstein equations
coupled to null dusts. This construction is an illustration of the so called
backreaction, studied by physicists (Isaacson, Burnet, Green, Wald...) : the
small scale inhomogeneities have an effect on the large scale dynamics in
the form of an energy impulsion tensor in the right-hand side of Einstein
equations. This is a joint work with Jonathan Luk (Stanford).

  • Quantum Field Theory Seminar
20 February 2018
Simon Wood

Some of the most studied examples of conformal field theories
the Wess-Zumino-Witten models. These are conformal field theories exhibiting
affine Lie algebra symmetry at non-negative integers levels. In this talk I
discuss conformal field theories exhibiting affine Lie algebra symmetry at
certain rational (hence fractional) levels whose structure is arguably even
more intricate than the structure of the non-negative integer levels,
one is prepared to look beyond highest weight modules.

  • Quantum Field Theory Seminar
13 February 2018
Tim Palmer

Hardy's axiomatic approach to quantum theory revealed that just one axiom
distinguishes quantum theory from classical probability theory: there should
be continuous reversible transformations between any pair of pure states. It
is the single word `continuous' that gives rise to quantum theory. This
raises the question: Does there exist a finite theory of quantum physics
(FTQP) which can replicate the tested predictions of quantum theory to
experimental accuracy? Here we show that an FTQP based on complex Hilbert
vectors with rational squared amplitudes and rational phase angles is
possible providing the metric of state space is based on p-adic rather than
Euclidean distance. A key number-theoretic result that accounts for the
Uncertainty Principle in this FTQP is the general incommensurateness between
rational $\phi$ and rational $\cos \phi$. As such, what is often referred to
as quantum `weirdness' is simply a manifestation of such number-theoretic
incommensurateness. By contrast, we mostly perceive the world as classical
because such incommensurateness plays no role in day-to-day physics, and
hence we can treat $\phi$ (and hence $\cos \phi$) as if it were a continuum
variable. As such, in this FTQP there are two incommensurate Schr\"{o}dinger
equations based on the rational differential calculus: one for rational
$\phi$ and one for rational $\cos \phi$. Each of these individually has a

simple probabilistic interpretation - it is their merger into one equation
on the complex continuum that has led to such problems over the years. Based
on this splitting of the Schr\"{o}dinger equation, the measurement problem
is trivially solved in terms of a nonlinear clustering of states on $I_U$.
Overall these results suggest we should consider the universe as a causal
deterministic system evolving on a finite fractal-like invariant set $I_U$
in state space, and that the laws of physics in space-time derive from the
geometry of $I_U$. It is claimed that such a  deterministic causal FTQP will
be much easier to synthesise with general relativity theory than is quantum

  • Quantum Field Theory Seminar
21 November 2017
Alexander Strohmaier

I will review some classical results on geometric scattering
theory for linear hyperbolic evolution equations
on globally hyperbolic spacetimes and its relation to particle and charge
creation in QFT. I will then show that some index formulae for the
scattering matrix can be interpreted as a special case of the  Lorentzian
analog of the Atyiah-Patodi-Singer index theorem. I will also discuss a
local version of this theorem and its relation to anomalies in QFT.
(Joint work with C. Baer)

  • Quantum Field Theory Seminar
7 November 2017
Gabriele Veneziano

I will start with a quick reminder of what we have learned so far about
transplanckian-energy collisions of particles, strings and branes.
I will then address the (so-far unsolved) problem of gravitational
bremsstrahlung from massless particle collisions at leading order in the
gravitational deflection angle.
Two completely different calculations, one classical and one quantum, lead
to the same final, though somewhat puzzling, result.


  • Quantum Field Theory Seminar