Past Relativity Seminar

8 June 2012
15:00
David McGady
Abstract

Abstract: In this talk, I will discuss the proportionality between tree amplitudes and the ultraviolet divergences in their one-loop corrections in Yang-Mills and (N < 4) Super Yang-Mills theories in four-dimensions. From the point of view of local perturbative quantum field theory, i.e. Feynman diagrams, this proportionality is straightforward: ultraviolet divergences at loop-level are absorbed into coefficients of local operators/interaction vertices in the original tree-amplitude. Ultraviolet divergences in loop amplitudes are also calculable through on-shell methods. These methods ensure manifest gauge-invariance, even at loop-level (no ghosts), at the expense of manifest locality. From an on-shell perspective, the proportionality between the ultraviolet divergences the tree amplitudes is thus not guaranteed. I describe systematic structures which ensure proportionality, and their possible connections to other recent developments in the field.

29 May 2012
12:00
Dr M Dunajski
Abstract
Solitons are localised non-singular lumps of energy which describe particles non perturbatively. Finding the solitons usually involves solving nonlinear differential equations, but I shall show that in some cases the solitons emerge directly from the underlying space-time geometry: certain abelian vortices arise from surfaces of constant mean curvature in Minkowski space, and skyrmions can be constructed from the holonomy of gravitational instantons.
28 February 2012
12:00
Mahdi Godazgar
Abstract

Abstract: In this talk, I will discuss the peeling behaviour of the Weyl tensor near null infinity for asymptotically flat higher dimensional spacetimes. The result is qualitatively different from the peeling property in 4d. Also, I will discuss the rewriting of the Bondi energy flux in terms of "Newman-Penrose" Weyl components.

21 February 2012
12:00
Tim Adamo
Abstract

Abstract:

Motivated by the correlation functions-Wilson loop correspondence in maximally supersymmetric Yang-Mills theory, we will investigate a conjecture of Alday, Buchbinder, and Tseytlin regarding correlators of null polygonal Wilson loops with local operators in general position.  By translating the problem to twistor space, we can show that such correlators arise by taking null limits of correlation functions in the gauge theory, thereby providing a proof for the conjecture.  Additionally, twistor methods allow us to derive a recursive formula for computing these correlators, akin to the BCFW recursion for scattering amplitudes.

17 January 2012
12:00
Prof Graeme Segal
Abstract

The WZW functional for a map from a surface to a Lie group has a role in the theory of harmonic maps, and it also arises as the determinant of a d-bar operator on the surface, as the action functional for a 2-dimensional quantum field theory, as the partition function of 3-dimensional Chern-Simons theory on a manifold with boundary, and as the norm-squared of a state-vector. It is intimately related to the quantization of the symplectic manifold of flat bundles on the surface, a fascinating test-case for different approaches to geometric quantization. It is also interesting as an example of interpolation between commutative and noncommutative geometry. I shall try to give an overview of the area, focussing on the aspects which are still not well understood.

Pages