# Past Representation Theory Seminar

A Landau-Ginzburg B-model is a smooth scheme $X$, equipped with a global function $W$. From $(X,W)$ we can construct a category $D(X,W)$, which is called by various names, including ‘the category of B-branes’. In the case $W=0$ it is exactly the derived category $D(X)$, and in the case that $X$ is affine it is the category of matrix factorizations of $W$. There has been a lot of foundational work on this category in recent years, I’ll describe the most modern and flexible approach to its construction. I’ll then interpret Nick Addington’s thesis in this language. We’ll consider the case that $W$ is a quadratic form on a vector bundle, and the corresponding global version of Knorrer periodicity. We’ll see that interesting gerbe structures arise, related to the bundle of isotropic Grassmannians.

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$. In the third talk we will see that $\Lambda$ admits a canonical quantization if it is a "conification" of a compact exact Lagrangian submanifold of a cotangent bundle. We will see how to use this quantization to recover results of Fukaya-Seidel-Smith and Abouzaid on the topology of $\Lambda$.

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$. In the first talk we will see that the graph of a Hamiltonian isotopy admits a canonical quantization and we deduce a new proof of Arnold's non-displaceability conjecture.