Numerical methods for SDEs typically use only the discretized increments of the driving Brownian motion. As one would expect, this approach is sensible and very well studied.

In addition to generating increments, it is also straightforward to generate time integrals of Brownian motion. These quantities give extra information about the Brownian path and are known to improve the strong convergence of methods for one-dimensional SDEs. Despite this, numerical methods that use time integrals alongside increments have received less attention in the literature.

In this talk, we will develop some underlying theory for these time integrals and introduce a new numerical approach to SDEs that does not require evaluating vector field derivatives. We shall also discuss the possible implications of this work for multi-dimensional SDEs.