Forthcoming events in this series


Mon, 06 May 2013

12:00 - 13:00
L3

Torsion-free generalized connections and heterotic supergravity

Mario Garcia Fernandez
(EPFL)
Abstract
I will present a new derivation of the equations of motion of Heterotic supergravity using generalized geometry, inspired by the geometric description of 11-dimensional and type II supergravity by Coimbra, Strickland-Constable and Waldram. From a mathematical point of view, this arises from the study of torsion-free generalized connections on a non-exact Courant algebroid. We will find that the freedom provided by the dilaton field in the physical theory can be interpreted as the freedom of choice of Levi-Civita connection in generalized geometry.
Mon, 29 Apr 2013

12:00 - 13:00
L3

Hyperconifold Singularities and Transitions

Rhys Davies
(Oxford)
Abstract
I will discuss a class of isolated singularities, given by finite cyclic quotients of a threefold node (conifold), which arise naturally in compact Calabi-Yau threefolds. These singularities admit projective crepant resolutions, and thereby give rise to topological transitions between compact Calabi-Yau spaces. Among the interesting properties of such 'hyperconifold transitions' is that they can change the fundamental group, and are related by mirror symmetry to familiar conifold transitions. Having established these mathematical properties, I will briefly discuss some applications, as well as the physics of type IIB string theory compactified on a space with a hyperconifold singularity.
Mon, 25 Feb 2013

12:00 - 13:00
L3

Fenchel-Nielsen coordinates from spectral networks

Lotte Hollands
(Oxford)
Abstract
Fenchel-Nielsen coordinates play a central role in constructing partition functions for theories of class S with gauge group SU(2). Having an analogue of these coordinates for higher rank gauge groups is a first step in finding partition functions for strongly coupled gauge theories of the Minahan-Nemeschansky type. We find such a generalization through the formalism of spectral networks and the non-abelianization map, that was originally introduced by Gaiotto, Moore and Neitzke to find a better understanding of BPS states in the theories of class S. This is joint work with Andy Neitzke.
Mon, 18 Feb 2013

12:00 - 13:00
L3

A magic square from Yang-Mills squared

Mike Duff
(Imperial College)
Abstract
I will give a division algebra R,C,H,O description of D = 3 Yang-Mills with N = 1,2,4,8 and hence, by tensoring left and right multiplets, a magic square RR, CR, CC, HR, HC, HH, OR, OC, OH, OO description of D = 3 supergravity with N = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16.
Mon, 11 Feb 2013

12:00 - 13:00
L3

On sequestering and decoupling in stabilized string models

David Marsh
(Oxford)
Abstract
I will describe recent efforts to understand the mediation of supersymmetry breaking in stabilized compactifications of type IIB string theory. By geometrically separating the visible sector from the supersymmetry breaking effects one may hope to achieve sequestered supersymmetry breaking and much ameliorated constraints from bounds on flavor changing neutral currents. However, in this talk I will discuss how non-perturbative superpotential cross-couplings between the visible sector and the Kähler moduli may spoil sequestering and introduce a sensitivity to the global details of the compactification. As a simple example, I will describe the structure of these `de-sequestering’ operators for a class of visible sectors realized by D-branes probing an orbifold singularity, and I will discuss their importance in the KKLT and LVS moduli stabilization scenarios.
Mon, 28 Jan 2013

12:00 - 13:00
L3

Reductions with reduced supersymmetry in generalized geometry

Mariana Graña
(CEA/Saclay)
Abstract
We will discuss supersymmetric reductions of type II and M-theory down to four dimensions, in the language of exceptional generalized geometry (EGG). EGG is the extension of generalized complex geometry which also geometrizes the RR fields, and is therefore the relevant language to use in M-theory. After a brief introduction to EGG, we will present the algebraic structures that encode all information about the lower-dimensional action, concentrating on the case of N=2 supersymmetry. We will show, in particular, that these structures have a nice description using an 8-dimensional tangent space, where they look like pure spinors as in generalized complex geometry.
Mon, 21 Jan 2013

12:00 - 13:00
L3

Umbral Moonshine

Miranda Cheng
(Jussieu)
Abstract
Mock modular forms are generalizations of modular forms first introduced by Ramanujan. Their properties had been mysterious for 80 years until various breakthroughs in the past 10 years. In the last century, the Monstrous Moonshine Conjecture initiated the study of the fascinating relation between modular forms and sporadic groups. In this talk I will report a conjecture on a new type of "umbral moonshine" relating a set of mock modular forms, including many of Ramanujan's original examples, and the representation theory of a set of finite groups. One instance of such a surprising umbral moonshine phenomenon relates the largest Mathieu group to the elliptic genus of K3 surfaces, as was first observed by Euguchi-Ooguri-Tachikawa in 2010. Moreover, there are hints suggesting that all occurrences of umbral moonshine have a close relation to K3-compactifications of string theory. However, despite of these tantalising hints the origin and the explanation of this umbral moonshine is still unclear at the moment. This talk is based on the arXiv pre-print: 1201.4140, 1204.2779 with John Duncan and Jeff Harvey.
Mon, 14 Jan 2013

12:00 - 13:00
L3

Non-commuting closed strings on non-geometric backgrounds

Magdalena Larfors
(Oxford)
Abstract
Strings are extended objects, and this means that they can be compactified not only on Riemannian manifolds, but also on more exotic spaces with generalized transition functions. An example of this is the T-fold, where T-duality is used to glue the Neveu-Schwarz fields of the background. Collectively, these exotic set-ups are known as non-geometric string compactifications, and in this talk I will discuss two of their aspects. First, I will present a field redefinition in the Neveu-Schwarz sector that allows a ten-dimensional, effective description of certain non-geometric backgrounds. This redefinition is inspired by Generalized Geometry and Double Field Theory. Second, I will show that closed strings become non-commuting when non-geometric fluxes are turned on. This will be done through the analysis of a three-torus with H-flux and its T-dual configurations.
Mon, 26 Nov 2012

12:00 - 13:00
L3

Scanning for stabilizing bundles in heterotic vacua

James Gray
(LMU Munich)
Abstract
I will describe methods for searching for bundles which are only holomorphic for isolated complex structures of a base Calabi-Yau threefold. These can be used, in the hidden sector of heterotic compactifications, to stabilize the associated moduli fields. Various bundle constructions will be covered, and the possibility and consequences of resolving the potentially singular threefolds which result will be discussed. If time permits, I will also briefly mention a large set of Calabi-Yau fourfolds which is currently being classified.
Fri, 23 Nov 2012

12:00 - 13:00
Gibson 1st Floor SR

$\chi$-Systems for Correlation Functions

Jonathan Toledo
(Perimeter Institute)
Abstract
We consider the strong coupling limit of 4-point functions of heavy operators in N=4 SYM dual to strings with no spin in AdS. We restrict our discussion for operators inserted on a line. The string computation factorizes into a state-dependent sphere part and a universal AdS contribution which depends only on the dimensions of the operators and the cross ratios. We use the integrability of the AdS string equations to compute the AdS part for operators of arbitrary conformal dimensions. The solution takes the form of TBA-like integral equations with the minimal AdS string-action computed by a corresponding free-energy-like functional. These TBA-like equations stem from a peculiar system of functional equations which we call a \chi-system. In principle one could use the same method to solve for the AdS contribution in the N-point function. An interesting feature of the solution is that it encodes multiple string configurations corresponding to different classical saddle-points. The discrete data that parameterizes these solutions enters through the analog of the chemical-potentials in the TBA-like equations. Finally, for operators dual to strings spinning in the same equator in S^5 (i.e. BPS operators of the same type) the sphere part is simple to compute. In this case (which is generically neither extremal nor protected) we can construct the complete, strong-coupling 4-point function.
Mon, 19 Nov 2012

12:00 - 13:00
L3

Holomorphic blocks in 3 dimensions

Sara Pasquetti
(University of Surrey)
Abstract
We show that sphere partition functions and indices of 3 dimensional, N = 2, gauge theories can be decomposed into a sum of products of a universal set of holomorphic blocks. The blocks count BPS states of a theory on R2 × S1 and are in one-to-one correspondence with the theory’s massive vacua. The blocks turn out to have a wealth of surprising properties such as a Stokes phenomenon and have interesting dual interpretations in analytically continued Chern-Simons theory and open topological strings.
Mon, 12 Nov 2012

12:00 - 13:00
L3

Scattering Amplitudes in Three Dimensions

Arthur Lipstein
(Oxford)
Abstract
I will describe scattering amplitudes of 3d Yang-Mills and Chern-Simons theories and what they may imply about string theory and M-theory.
Mon, 05 Nov 2012

12:00 - 13:00
L3

Global Aspects of F-theory on singular CY fourfolds

Sakura Schafer-Nameki
(Kings College London)
Abstract
F-theory compactifications on singular elliptic Calabi-Yau fourfolds provide an ideal framework to study supersymmetric Grand Unified Theories. Recent years have seen much progress in local F-theory model building. Understanding the global constraints for realizing local models are key in estabilishing a consistent F-theoretic realization. We will address these questions by analyzing the structure of the singular elliptic CY fourfolds, which form the geometric foundation for these compactification, as well as the construction of globally consistent G_4 flux.
Mon, 29 Oct 2012

12:00 - 13:00
L3

String compactifications on SU(3) structure manifolds

Magdalena Larfors
(Oxford)
Abstract

In the absence of background fluxes and sources, the compactification of string theories on Calabi-Yau threefolds leads to supersymmetric solutions.Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the geometry to break the Calabi-Yau conditions, and to satisfy, instead, the weaker condition of reduced structure. In this talk I will discuss manifolds with SU(3) structure, and their relevance for heterotic string compacitications. I will focus on domain wall solutions and how explicit example geometries can be constructed.

Mon, 22 Oct 2012

12:00 - 13:00

A Metric for Heterotic Moduli

Jock McOrist
(University of Surrey)
Abstract
Even once the F-theory dust has settled, the heterotic string remains a viable route to N=1 d=4 phenomenology and is a fertile ground for developing the mathematics of holomorphic vector bundles. Within this context, there has been recent progress in using worldsheet techniques to understand the F-terms of certain heterotic compactifications. Less is understood about their D-term cousins. In this talk I will describe some steps towards rectifying this, writing down a moduli space metric for vector bundle deformations and describing some of its properties. Such metrics are relevant physically ( to normalise Yukawa couplings) as well as in the mathematics of vector bundles (they extend the metric of Kobayashi).
Mon, 15 Oct 2012

12:00 - 13:00

The Hodge Plot of Toric Calabi-Yau Threefolds. Webs of K3 Fibrations from Polyhedra with Interchangeable Parts

Andrei Constantin
(Oxford)
Abstract
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic-K3 fibrations whose mirror images are also elliptic-K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.
Mon, 08 Oct 2012

12:00 - 13:00
L3

Lines on the Dwork Pencil of Quintic Threefolds

Philip Candelas
(Oxford)
Abstract
I will discuss some of the subtleties involved in counting lines on Calabi-Yau threefolds and then discuss the lines on the Dwork pencil of quintic threefolds. It has been known for some time that the manifolds of the pencil contain continuous families of lines and it is known from the work of Angca Mustata that there are 375 discrete lines and also two families parametrized by isomorphic curves that are 125:1 covers of genus six curves $C_{\pm\varphi}$. The surprise is that an explicit parametrization of these families is not as complicated as might have been anticipated.  We find, in this way, what should have anticipated from the outset, that the curves $C_\varphi$ are the curves of the Wiman pencil.  
Mon, 28 May 2012

12:00 - 13:00
L3

Instanton - a window into physics of M5-branes

Sungjay Lee
(University of Cambridge)
Abstract

Instantons and W-bosons in 5d N=2 Yang-Mills theory arise from a circle

compactification of the 6d (2,0) theory as Kaluza-Klein modes and winding

self-dual strings, respectively. We study an index which counts BPS

instantons with electric charges in Coulomb and symmetric phases. We first

prove the existence of unique threshold bound state of U(1) instantons for

any instanton number. By studying SU(N) self-dual strings in the Coulomb

phase, we find novel momentum-carrying degrees on the worldsheet. The total

number of these degrees equals the anomaly coefficient of SU(N) (2,0) theory.

We finally propose that our index can be used to study the symmetric phase of

this theory, and provide an interpretation as the superconformal index of the

sigma model on instanton moduli space. 

Mon, 21 May 2012

12:00 - 13:00
L3

Double Field Theory and the Geometry of Duality

Chris Hull
(Imperial College London)
Abstract

String theory on a torus requires the introduction of dual coordinates

conjugate to string winding number. This leads to physics and novel geometry in a doubled space. This will be

compared to generalized geometry, which doubles the tangent space but not the manifold.

For a d-torus,   string theory can be formulated in terms of an infinite

tower of fields depending on both the d torus coordinates and the d dual

coordinates. This talk focuses on a finite subsector  consisting of a metric

and B-field (both d x d matrices) and a dilaton all depending on the 2d

doubled torus coordinates.

The double field theory is constructed and found to have a novel symmetry

that reduces to diffeomorphisms and anti-symmetric tensor gauge

transformations in certain circumstances. It also has manifest T-duality

symmetry which provides a generalisation of the usual Buscher rules to

backgrounds without isometries. The theory has a real dependence on the full

doubled geometry:  the dual dimensions are not auxiliary. It is concluded

that the doubled geometry is physical and dynamical.

Mon, 14 May 2012

12:00 - 13:00
L3

N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces

Yang-Hui He
(City University London)
Abstract

We establish a correspondence between generalized quiver gauge theories in

four dimensions and congruence subgroups of the modular group, hinging upon

the trivalent graphs which arise in both. The gauge theories and the graphs

are enumerated and their numbers are compared. The correspondence is

particularly striking for genus zero torsion-free congruence subgroups as

exemplified by those which arise in Moonshine. We analyze in detail the

case of index 24, where modular elliptic K3 surfaces emerge: here, the

elliptic j-invariants can be recast as dessins d'enfant which dictate the

Seiberg-Witten curves.

Mon, 07 May 2012

12:00 - 13:00
L3

Integer Partitions, Mirror Symmetry and 3d Gauge Theories

Noppadol Mekareeya
(Max Planck Institut fuer Physik)
Abstract

In this talk, I will focus on an infinite class of 3d N=4 gauge theories

which can be constructed from a certain set of ordered pairs of integer

partitions. These theories can be elegantly realised on brane intervals in

string theory.  I will give an elementary review on such brane constructions

and introduce to the audience a symmetry, known as mirror symmetry, which

exchanges two different phases (namely the Higgs and Coulomb phases) of such

theories.  Using mirror symmetry as a tool, I will discuss a certain

geometrical aspect of the vacuum moduli spaces of such theories in the

Coulomb phase. It turns out that there are certain infinite subclasses of

such spaces which are special and rather simple to study; they are complete intersections. I will mention some details and many interesting features of these spaces.

Mon, 30 Apr 2012

12:00 - 13:00
L3

A simple formula for gravitational MHV amplitudes

Andrew Hodges
(Oxford)
Abstract

A simple formula is given for the $n$-field tree-level MHV gravitational

amplitude, based on soft limit factors. It expresses the full $S_n$ symmetry

naturally, as a determinant of elements of a symmetric ($n \times n$) matrix.

Mon, 23 Apr 2012

12:00 - 13:00
L3

Gauge-Strings Duality and applications

Carlos Nunez
(Swansea University)
Abstract

I will discuss some recent progress connecting different quiver gauge theories and some applications of these results.

Mon, 05 Mar 2012

12:00 - 13:00
L3

Three-sphere partition function, counterterms and supergravity

Cyril Closset
(Weizmann Institute)
Abstract

The partition function of 3d N=2 superconformal theories on the

3-sphere can be computed exactly by localization methods. I will explain

some sublteties associated to that important result. As a by-product, this

analysis establishes the so-called F-maximization principle for N=2 SCFTs in

3d: the exact superconformal R-charge maximizes the 3-sphere free energy

F=-log Z.

Mon, 27 Feb 2012

12:00 - 13:00
L3

Holographic stripes and helical superconductors

Aristomenis Donos
(Imperial College London)
Abstract

The AdS/CFT correspondence is a powerful tool to analyse strongly coupled quantum field

theories. Over the past few years there has been a surge of activity aimed at finding

possible applications to condensed matter systems. One focus has been to holographically

realise various kinds of phases via the construction of fascinating new classes of black

hole solutions. In this framework, I will discuss the possibility of describing finite

temperature phase transitions leading to spontaneous breaking of translational invariance of

the dual field theory at strong coupling. Along with the general setup I will also discuss

specific string/M theory embeddings of the corresponding symmetry breaking modes leading to

the description of such phases.

Mon, 20 Feb 2012

12:00 - 13:00
L3

M-theory dualities and generalised geometry

Hadi Godazgar
(University of Cambridge)
Abstract

In this talk we will review M-theory dualities and recent attempts to make these dualities manifest in eleven-dimensional supergravity. We will review the work of Berman and Perry and then outline a prescription, called non-linear realisation, for making larger duality symmetries manifest. Finally, we will explain how the local symmetries are described by generalised geometry, which leads to a duality-covariant constraint that allows one to reduce from generalised space to physical space.

Mon, 13 Feb 2012

12:00 - 13:00
L3

Quantum states to brane geometries via fuzzy moduli space

Sanjaye Ramgoolam
(Queen Mary University of London)
Abstract

The moduli space of supersymmetric (eighth-BPS) giant gravitons in $AdS_5 \times S^5$ is a limit of projective spaces. Quantizing this moduli space produces a Fock space of oscillator states, with a cutoff $N$ related to the rank of the dual $U(N)$ gauge group. Fuzzy geometry provides the ideal set of techniques for associating points or regions of moduli space to specific oscillator states. It leads to predictions for the spectrum of BPS excitations of specific worldvolume geometries. It also leads to a group theoretic basis for these states, containing Young diagram labels for $U(N)$ as well as the global $U(3)$ symmetry group. The problem of constructing gauge theory operators corresponding to the oscillator states and  some recent progress in this direction are explained.

Mon, 06 Feb 2012

12:00 - 13:00
L3

The MSSM spectrum from the heterotic standard embedding

Rhys Davies
(Oxford)
Abstract

I will describe the recent construction of new supersymmetric compactifications of the heterotic string which yield just the spectrum of the MSSM at low energies. The starting point is the standard embedding solution on a Calabi-Yau manifold with Euler number -6 with various choices of Wilson lines, i.e., various choices of discrete holonomy for the gauge bundle. Although they yield three net generations of standard model matter, such models necessarily have a larger gauge group than the standard model, as well as exotic matter content. Families of stable bundles can be obtained by deformation of these simple solutions, the deformation playing the dual role of partially breaking the gauge group and reducing the matter content, and in this way we construct more realistic models. The moduli space breaks up into various branches depending on the initial choice of Wilson lines, and on eight of these branches we find models with exactly the standard model gauge group, three generations of quarks and leptons, two Higgs doublets, and no other massless charged states. I will also comment on why these are possibly the unique models of this type.

Mon, 30 Jan 2012

12:00 - 13:00
L3

Singularity structure and massless dyons of pure N = 2, d = 4 theories with SU(r+1) and Sp(2r) gauge groups

Jihye Seo
(McGill University)
Abstract

We study pure Seiberg-Witten theories with $SU(r+1)$ and $Sp(2r)$ gauge groups with no flavors. We study singularity loci of moduli space of the Seiberg-Witten curve. Using exterior derivative and discriminant operators, we can find Argyres-Douglas loci of the SW theory. We also compute BPS charges of the massless dyons of $SU$ and $Sp$ SW theory. In a detailed example of $C_2=Sp(4)$, we find 6 points in the moduli space where we have 2 massless BPS dyons, and 3 of them give Argyres-Douglas loci. We show that BPS charges of the massless dyons jump as we go across Argyres-Douglas loci, giving an explicit example of Argyres-Douglas loci living inside the wall of marginal stability. (Based on work in progress with Keshav Dasgupta)

Mon, 23 Jan 2012

12:00 - 13:00
L3

Giant Gravitons in the ABJM Duality

Andrea Prinsloo
(University of Cape Town)
Abstract

I shall describe the construction of the four-brane giant graviton on $\mathrm{AdS}_4\times \mathbb{CP}^3$ (extended and moving in the complex projective space), which is dual to a subdeterminant operator in the ABJM model. This dynamically stable, BPS configuration factorizes at maximum size into two topologically stable four-branes (each wrapped on a different $\mathbb{CP}^2 \subset \mathbb{CP}^3$ cycle) dual to ABJM dibaryons. Our study of the spectrum of small fluctuations around this four-brane giant provides good evidence for a dependence in the spectrum on the size, $\alpha_0$, which is a direct result of the changing shape of the giant’s worldvolume as it grows in size. I shall finally comment upon the implications for operators in the non-BPS, holomorphic sector of the ABJM model.

Mon, 16 Jan 2012

12:00 - 13:00
L3

Generalized quark-antiquark potential of N=4 SYM at weak and strong coupling

Nadav Drukker
(King's College London)
Abstract

I will present a two-parameter family of Wilson loop operators in N = 4 supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. These loops are calculated on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. I will comment about the feasibility of deriving all-loop results for these Wilson loops.

Mon, 28 Nov 2011

12:00 - 13:00
L3

Emergent IR CFTs in black hole physics

Joan Simon
(University of Edinburgh)
Abstract

I will discuss the dynamical emergence of IR conformal invariance describing the low energy excitations of near-extremal R-charged global AdS${}_5$ black holes. To keep some non-trivial dynamics in the sector of ${\cal N}=4$ SYM captured by the near horizon limits describing these IR physics, we are lead to study large N limits in the UV theory involving near vanishing horizon black holes. I will consider both near-BPS and non-BPS regimes, emphasising the differences in the local AdS${}_3$ throats emerging in both cases. I will compare these results with the predictions obtained by Kerr/CFT, obtaining a natural quantisation for the central charge of the near-BPS emergent IR CFT describing the open strings stretched between giant gravitons.

Mon, 21 Nov 2011

12:00 - 13:00
L3

Gravity duals of supersymmetric gauge theories on curved manifolds

James Sparks
(Oxford)
Abstract

In just the last year it has been realized that one can define supersymmetric gauge theories on non-trivial compact curved manifolds, coupled to a background R-symmetry gauge field, and moreover that expectation values of certain BPS operators reduce to finite matrix integrals via a form of localization. I will argue that a general approach to this topic is provided by the gauge/gravity correspondence. In particular, I will present several examples of supersymmetric gauge theories on different 1-parameter deformations of the three-sphere, which have a large N limit, together with their gravity duals (which are solutions to Einstein-Maxwell theory). The Euclidean gravitational partition function precisely matches a large N matrix model evaluation of the field theory partition function, as an exact \emph{function} of the deformation parameter.

Mon, 14 Nov 2011

12:00 - 13:00
L3

Scattering and Sequestering of Blow-Up Moduli in Local String Models

Lukas Witkowski
(Oxford)
Abstract

I will study the sequestering of blow-up fields through a CFT in a toroidal orbifold setting. In particular, I will examine the disk correlator between orbifold blow-up moduli and matter Yukawa couplings. Blow-up moduli appear as twist fields on the worldsheet which introduce a monodromy

condition for the coordinate field X. Thus I will focus on how the presence of twist field affects

the CFT calculation of disk correlators. Further, I will explain how the results are relevant to

suppressing soft terms to scales parametrically below the gravitino mass. Last, I want to explore the

relevance of our calculation for the case of smooth Calabi-Yaus.

Mon, 07 Nov 2011

12:00 - 13:00
L3

Landscape of consistent reductions with applications

Davide Cassani
(King's College London)
Abstract

Consistent truncations have proved to be powerful tools in the construction of new string theory solutions. Recently, they have been employed in the holographic description of condensed matter systems. In the talk, I will present a rich class of supersymmetric consistent truncations of higher-dimensional supergravity which are based on geometric structures, focusing on the tri-Sasakian case. Then I will discuss some applications, including a general result relating AdS backgrounds to solutions with non-relativistic Lifshitz symmetry.

Mon, 31 Oct 2011
12:00
L3

Three-Point Functions and Integrability: Weak/strong coupling match

Nikolay Gromov
(King's College London)
Abstract

We compute three-point functions of single trace operators in planar N = 4 SYM. We consider the limit where one of the operators is much smaller than the other two. We find a precise match between weak and strong coupling in the Frolov-Tseytlin classical limit for a very general class of classical solutions. To achieve this match we clarify the issue of back-reaction and identify precisely which three-point functions are captured by a classical computation.

Mon, 24 Oct 2011

12:00 - 13:00
L3

Bundles over nearly-Kähler homogeneous spaces in heterotic string theory

Michael Klaput
(Oxford)
Abstract

String compactifications incorporating non-vanishing H-flux have received increased attention over the past decade for their potential relevance to the moduli stabilization problem. Their internal spaces are in general not Kähler and, therefore, not Calabi-Yau. In the heterotic string an important technical problem is to construct gauge bundles on such spaces. I will present a method of how to explicitly construct gauge bundles over homogeneous nearly-Kähler manifolds of dimension six and discuss some of the arising implications for model building.

Mon, 17 Oct 2011

12:00 - 13:00
L3

A ten-dimensional action for non-geometric fluxes

David Andriot
(LMU Munich)
Abstract

Four-dimensional (4d) supergravities with non-geometric terms in their potential are very promising models for phenomenology. Indeed, these terms, generated by so-called non-geometric fluxes, generically help to obtain de Sitter vacua, or to stabilise moduli. Unfortunately, deriving these theories from a compactified ten-dimensional (10d) supergravity has not been achieved so far. One reason is that non-geometric fluxes do not seem to match any 10d field, and another reason is the appearance of global issues in 10d non-geometric configurations.

After reviewing some background material, we present in this talk a solution to the two previous issues. Thanks to a field redefinition, we make the non-geometric Q-flux appear in a 10d action, which only differs from the NSNS action by a total derivative. In addition, this new action is globally well-defined, at least in some examples, and one can then perform the dimensional reduction to recover the 4d non-geometric potential. We also mention an application to the heterotic string.

Based on 1106.4015.

Mon, 10 Oct 2011

12:00 - 13:00
L3

Superconformal Chern-Simons Theories and The AdS/CFT Correspondence

Arthur Lipstein
(Oxford)
Abstract

The study of superconformal Chern-Simons theories has led to a deeper understanding of M-theory and a new example of the AdS/CFT correspondence. In this talk, I will give an overview of superconformal Chern-Simons theories and their gravity duals. I will also describe some recent work on scattering amplitudes in these theories.

Mon, 13 Jun 2011

12:00 - 13:00
L3

3D-partition functions on the sphere: exact evaluation and mirror symmetry

Sara Pasquetti
(QMUL)
Abstract
Recently it has been shown that path integrals of N=4 theories on the three-sphere can be  localised  to matrix integrals. I will show how to obtain exact expressions  of partition functions by an explicit evaluation of these matrix integrals.
Mon, 06 Jun 2011

12:00 - 13:00
L3

String compactifications on toric varieties

Magdalena Larfors
(LMU Munich)
Abstract
In the absence of background fluxes and sources, compactifying string theories on Calabi-Yau three-folds leads to supersymmetric solutions. Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the three-fold to break the Calabi-Yau conditions, and instead fulfill the weaker geometrical condition of having a reduced structure group. In this talk I will demonstrate that three-dimensional smooth, compact, toric varieties can have reduced structure group, and thus be suitable for flux compactifications of string theory. Since the class of three-dimensional SCTV is large, this is promising for the construction of new, phenomenologically interesting string theory vacua.
Mon, 23 May 2011

12:00 - 13:00
L3

Trivertices and SU(2)'s

Amihay Hanany
(Imperial College)
Abstract
Given a graph with lines and 3-valent vertices, one can construct, using a simple dictionary, a Lagrangian that has N=2 supersymmetry in 3+1 dimensions. This is a construction which generalizes the notion of a quiver. The vacuum moduli space of such a theory is well known to give moment map equations for a HyperKahler manifold. We will discuss the class of hyperkahler manifolds which arise due to such a construction and present their special properties. The Hilbert Series of these spaces can be computed and turns out to be a function of the number of external legs and loops in the graph but not on its detailed structure. The corresponding SCFT consequence of this property indicates a crucial universality of many Lagrangians, all of which have the same dynamics. The talk is based on http://arXiv.org/pdf/1012.2119.
Mon, 16 May 2011

12:00 - 13:30
L3

Stability conditions on local P^2

Tom Bridgeland
(Oxford)
Abstract
This talk will be about spaces of stability conditions. I will start by recalling Mike Douglas' original work on Pi-stability for D-branes, and go on to explain a couple of of the main open questions in the subject. The second half of the talk will focus on an illustrative example, namely the case of the local projective plane.
Mon, 09 May 2011
12:00
L3

CANCELLED

Sara Pasquetti
(QMUL)