Past Forthcoming Seminars

19 October 2017
15:00
Fabio Abruzzi
Abstract

Compactifications of 6D Superconformal Field Theories (SCFTs) on four-manidolfds lead to novel interacting 2D SCFTs. I will describe the various Lagrangian and non-Lagrangian sectors of the resulting 2D theories, as well as their interactions. In general this construction can be embedded in compactifications of the physical superstring, providing a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. a UV completion for non-critical string theories.  

 
  • String Theory Seminar
19 October 2017
14:00
Dr David Hewett
Abstract


The mathematical analysis and numerical simulation of acoustic and electromagnetic wave scattering by planar screens is a classical topic. The standard technique involves reformulating the problem as a boundary integral equation on the screen, which can be solved numerically using a boundary element method. Theory and computation are both well-developed for the case where the screen is an open subset of the plane with smooth (e.g. Lipschitz or smoother) boundary. In this talk I will explore the case where the screen is an arbitrary subset of the plane; in particular, the screen could have fractal boundary, or itself be a fractal. Such problems are of interest in the study of fractal antennas in electrical engineering, light scattering by snowflakes/ice crystals in atmospheric physics, and in certain diffraction problems in laser optics. The roughness of the screen presents challenging questions concerning how boundary conditions should be enforced, and the appropriate function space setting. But progress is possible and there is interesting behaviour to be discovered: for example, a sound-soft screen with zero area (planar measure zero) can scatter waves provided the fractal dimension of the set is large enough. Accurate computations are also challenging because of the need to adapt the mesh to the fine structure of the fractal. As well as presenting numerical results, I will outline some of the outstanding open questions from the point of view of numerical analysis. This is joint work with Simon Chandler-Wilde (Reading) and Andrea Moiola (Pavia).
 

  • Computational Mathematics and Applications Seminar
18 October 2017
17:00
Vicky Neale
Abstract

Prime numbers have intrigued, inspired and infuriated mathematicians for millennia and yet mathematicians' difficulty with answering simple questions about them reveals their depth and subtlety. 

Join Vicky to learn about recent progress towards proving the famous Twin Primes Conjecture and to hear the very different ways in which these breakthroughs have been made - a solo mathematician working in isolation, a young mathematician displaying creativity at the start of a career, a large collaboration that reveals much about how mathematicians go about their work.  

Vicky Neale is Whitehead Lecturer at the Mathematical Institute, University of Oxford and Supernumerary Fellow at Balliol College.

Please email external-relations@maths.ox.ac.uk to register.

18 October 2017
16:00
Abstract

I will present a gentle introduction to the theory of conformal dimension, focusing on its applications to the boundaries of hyperbolic groups, and the difficulty of classifying groups whose boundaries have conformal dimension 1.

  • Junior Topology and Group Theory Seminar
17 October 2017
16:00
Itaï Ben Yaacov
Abstract

Globally Valued Fields, studied jointly with E. Hrushovski, are a formalism for fields in which the sum formula for valuations holds, such as number fields or function fields of curves. They form an elementary class (in continuous first order logic), and model-theoretic questions regarding this class give rise to difficult yet fascinating geometric questions.
I intend to present « Lyon school » approach to studying GVFs. This consists of reducing as much as possible to local considerations, among other things via the "fullness" axiom.
 

17 October 2017
15:45
Thomas Prince
Abstract

Given a Fano manifold we will consider two ways of attaching a (usually infinite) collection of polytopes, and a certain combinatorial transformation relating them, to it. The first is via Mirror Symmetry, following a proposal of  Coates--Corti--Kasprzyk--Galkin--Golyshev. The second is via symplectic topology, and comes from considering degenerating Lagrangian torus fibrations. We then relate these two collections using the Gross--Siebert program. I will also comment on the situation in higher dimensions, noting particularly that by 'inverting' the second method (degenerating Lagrangian fibrations) we can produce topological constructions of Fano threefolds.
 

  • Algebraic Geometry Seminar
17 October 2017
14:30
Matteo Croci
Abstract

In this talk we describe a new approach that enables the use of elliptic PDEs with white noise forcing to sample Matérn fields within the multilevel Monte Carlo (MLMC) framework.

When MLMC is used to quantify the uncertainty in the solution of PDEs with random coefficients, two key ingredients are needed: 1) a sampling technique for the coefficients that satisfies the MLMC telescopic sum and 2) a numerical solver for the forward PDE problem.

When the dimensionality of the uncertainty in the problem is infinite (i.e. coefficients are random fields), the sampling techniques commonly used in the literature are Karhunen–Loève expansions or circulant embeddings. In the specific case in which the coefficients are Gaussian fields of Mat ́ern covariance structure another sampling technique available relies on the solution of a linear elliptic PDE with white noise forcing.


When the finite element method (FEM) is used for the forward problem, the latter option can become advantageous as elliptic PDEs can be quickly and efficiently solved with the FEM, the sampling can be performed in parallel and the same FEM software can be used without the need for external packages. However, it is unclear how to enforce a good stochastic coupling of white noise between MLMC levels so as to respect the MLMC telescopic sum. In this talk we show how this coupling can be enforced in theory and in practice.

  • Numerical Analysis Group Internal Seminar

Pages