Past Forthcoming Seminars

26 June 2018
18:00
Richard James
Abstract

The World population is growing at about 80 million per year.  As time goes by, there is necessarily less space per person. Perhaps this is why the scientific community seems to be obsessed with folding things.  In this lecture Dick James presents a mathematical approach to “rigid folding” inspired by the way atomistic structures form naturally - their features at a molecular level imply desirable features for macroscopic structures as well, especially 4D structures.  Origami structures even suggest an unusual way to look at the Periodic Table.

Richard D. James is Distinguished McKnight University Professor at the University of Minnesota.

Please email external-relations@maths.ox.ac.uk to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

26 June 2018
12:00
to
13:30
Prof Abhay Ashtekar
Abstract

Over 50 years ago, Bondi, Sachs, Newman, Penrose and others laid down foundations for the theory of gravitational waves in full non-linear general relativity. In particular, numerical simulations of binary mergers used in the recent discovery of gravitational waves are based on this theory. However, over the last 2-3 decades, observations have also revealed that the universe is accelerating in a manner consistent with the presence of a positive cosmological constant $\Lambda$. Surprisingly, it turns out that even the basic notions of the prevailing theory of gravitational waves --the Bondi news, the radiation field, the Bondi-Sachs 4-momentum-- do not easily generalize to this context, {\it no matter how small $\Lambda$ is.} Even in the weak field limit, it took a hundred years to find an appropriate generalization of Einstein's celebrated quadrupole formula to accommodate a positive cosmological constant. I will summarize the main issues and then sketch the current state of the art.
 

20 June 2018
12:00
Abbas Momeni
Abstract

In this talk, we shall provide a comprehensive variational principle that allows one to apply critical point theory on closed proper subsets of a given Banach space and yet, to obtain critical points with respect to the whole space.
This variational principle has many applications in partial differential equations while unifies and generalizes several results in nonlinear Analysis such as the fixed point theory, critical point theory on convex sets and the principle of symmetric criticality.

  • Partial Differential Equations Seminar
18 June 2018
15:45
Abstract

A proper simply connected one-ended metric space is call semi-stable if any two proper rays are properly homotopic.  A finitely presented group is called semi-stable if the universal cover of its presentation 2-complex is semi-stable.  
It is conjectured that every finitely presented group is semi-stable.  We will examine the known results for the cases where the group in question is relatively hyperbolic or CAT(0). 
 

15 June 2018
16:00
Abstract

Mathematical models based on first principles can describe the interaction between electrical, mechanical and fluid-dynamical processes occurring in the heart. This is a classical multi-physics problem. Appropriate numerical strategies need to be devised to allow for an effective description of the fluid in large and medium size arteries, the analysis of physiological and pathological conditions, and the simulation, control and shape optimisation of assisted devices or surgical prostheses. This presentation will address some of these issues and a few representative applications of clinical interest.

15 June 2018
15:00
Florian Eisele
Abstract

There are many interesting problems surrounding the unit group U(RG) of the ring RG, where R is a commutative ring and G is a finite group. Of particular interest are the finite subgroups of U(RG). In the seventies, Zassenhaus conjectured that any u in U(ZG) is conjugate, in the group U(QG), to an element of the form +/-g, where g is an element of the group G. This came to be known as the "(first) Zassenhaus conjecture". I will talk about the recent construction of a counterexample to this conjecture (this is joint work with L. Margolis), and recent work on related questions in the modular representation theory of finite groups.

15 June 2018
14:15
Nathalie Vriend
Abstract

A granular material forms a distinct and fascinating phase in physics -- sand acts as a fluid as grains flow through your fingers, the fallen grains form a solid heap on the floor or may suspend in the wind like a gas.

The main challenge of studying granular materials is the development of constitutive models valid across scales, from the micro-scale (collisions between individual particles), via the meso-scale (flow structures inside avalanches) to the macro-scale (dunes, heaps, chute flows).

In this talk, I am highlighting three recent projects from my laboratory, each highlighting physical behavior at a different scale. First, using the property of birefringence, we are quantifying both kinetic and dynamic properties in an avalanche of macroscopic particles and measure rheological properties. Secondly, we explore avalanches on an erodible bed that display an intriguing dynamic intermittency between regimes. Lastly, we take a closer look at aqueous (water-driven) dunes in a novel rotating experiment and resolve an outstanding scaling controversy between migration velocity and dune dimension.

  • Mathematical Geoscience Seminar

Pages