Past Forthcoming Seminars

8 March 2018
16:00
Abstract


We consider calculation of VaR/TVaR capital requirements when the underlying economic scenarios are determined by simulatable risk factors. This problem involves computationally expensive nested simulation, since evaluating expected portfolio losses of an outer scenario (aka computing a conditional expectation) requires inner-level Monte Carlo. We introduce several inter-related machine learning techniques to speed up this computation, in particular by properly accounting for the simulation noise. Our main workhorse is an advanced Gaussian Process (GP) regression approach which uses nonparametric spatial modeling to efficiently learn the relationship between the stochastic factors defining scenarios and corresponding portfolio value. Leveraging this emulator, we develop sequential algorithms that adaptively allocate inner simulation budgets to target the quantile region. The GP framework also yields better uncertainty quantification for the resulting VaR/\TVaR estimators that reduces bias and variance compared to existing methods.  Time permitting, I will highlight further related applications of statistical emulation in risk management.
This is joint work with Jimmy Risk (Cal Poly Pomona). 
 

  • Mathematical and Computational Finance Seminar
8 March 2018
14:00
Gabriel Barrenechea
Abstract

In this talk I will review recent results on the analysis of shock-capturing-type methods applied to convection-dominated problems. The method of choice is a variant of the Algebraic Flux-Correction (AFC) scheme. This scheme has received some attention over the last two decades due to its very satisfactory numerical performance. Despite this attention, until very recently there was no stability and convergence analysis for it. Thus, the purpose of the works reviewed in this talk was to bridge that gap. The first step towards the full analysis of the method is a rewriting of it as a nonlinear edge-based diffusion method. This writing makes it possible to present a unified analysis of the different variants of it. So, minimal assumptions on the components of the method are stated in such a way that the resulting scheme satisfies the Discrete Maximum Principle (DMP) and is convergence. One property that will be discussed in detail is the linearity preservation. This property has been linked to the good performance of methods of this kind. We will discuss in detail its role and the impact of it in the overall convergence of the method. Time permitting, some results on a posteriori error estimation will also be presented. 
This talk will gather contributions with A. Allendes (UTFSM, Chile), E. Burman (UCL, UK), V. John (WIAS, Berlin), F. Karakatsani (Chester, UK), P. Knobloch (Prague, Czech Republic), and 
R. Rankin (U. of Nottingham, China).

  • Computational Mathematics and Applications Seminar
8 March 2018
12:00
Marcel Ortgiese
Abstract

We consider the  symbiotic branching model, which describes a spatial population consisting of two types in terms of a coupled system of stochastic PDEs. One particularly important special case is Kimura's stepping stone model in evolutionary biology. Our main focus is a description of the interfaces between the types in the large scale limit of the system. As a new tool we will introduce a moment duality, which also holds for the limiting model. This also has implications for a classification of entrance laws of annihilating Brownian motions.

  • PDE CDT Lunchtime Seminar
7 March 2018
16:00
Marissa Loving
Abstract

 The $n$-stranded pure surface braid group of a genus g surface can be described as the subgroup of the pure mapping class group of a surface of genus $g$ with $n$-punctures which becomes trivial on the closed surface. I am interested in the least dilatation of pseudo-Anosov pure surface braids. For the $n=1$ case, upper and lower bounds on the least dilatation were proved by Dowdall and Aougab—Taylor, respectively.  In this talk, I will describe the upper and lower bounds I have proved as a function of $g$ and $n$.

  • Junior Topology and Group Theory Seminar
7 March 2018
14:00
Katarína Bellová
Abstract

For energy functionals composed of competing short- and long-range interactions, minimizers are often conjectured to form essentially periodic patterns on some intermediate lengthscale. However,  not many detailed structural results or proofs of periodicity are known in dimensions larger than 1. We study a functional composed of  the attractive, local interfacial energy of charges concentrated on a hyperplane and the energy of the electric field generated by these charges in the full space, which can be interpreted as a repulsive, non-local functional of the charges. We follow the approach of Alberti-Choksi-Otto and prove that the energy of minimizers of this functional is uniformly distributed  on cubes intersecting the hyperplane, which are sufficiently large with respect to the intrinsic lengthscale.

This is a joint work with A. Julia and F. Otto.

  • PDE CDT Lunchtime Seminar
7 March 2018
14:00
Elisabeth Oswald
Abstract

Side channel leakage is no longer just a concern for industries that
traditionally have a high degree of awareness and expertise in
(implementing) cryptography. With the rapid growth of security
sensitive applications in other areas, e.g. smartphones, homes, etc.
there is a clear need for developers with little to no crypto
expertise to implement and instantiate cryptography securely on
embedded devices. In this talk, I explain what makes finding side
channel leaks challenging (in theory and in practice) and give an
update on our latest work to develop methods and tools to enable
non-domain experts to ‘get a grip’ on leakage in their
implementations.

  • Cryptography Seminar
7 March 2018
10:00
to
12:00
Prof. Matt Szczesny
Abstract
Hall algebras of categories of quiver representations and coherent sheaves on smooth projective curves over F_q recover interesting representation-theoretic objects such as quantum groups and their generalizations. I will define and describe the structure of the Hall algebra of coherent sheaves on a projective variety over F_1, with P^2 as the main example. Examples suggest that it should be viewed as a degenerate q->1 limit of its counterpart over F_q.
6 March 2018
17:00
Eskil Rydhe
Abstract

Let $\mathrm{BMOA}_{\mathcal{NP}}$ denote the space of operator-valued analytic functions $\phi$ for which the Hankel operator $\Gamma_\phi$ is $H^2(\mathcal{H})$-bounded. Obtaining concrete characterizations of $\mathrm{BMOA}_{\mathcal{NP}}$ has proven to be notoriously hard. Let $D^\alpha$ denote differentiation of fractional order $\alpha$. Motivated originally by control theory, we characterize $H^2(\mathcal{H})$-boundedness of $D^\alpha\Gamma_\phi$, where $\alpha>0$, in terms of a natural anti-analytic Carleson embedding condition. We obtain three notable corollaries: The first is that  $\mathrm{BMOA}_{\mathcal{NP}}$ is not characterized by said embedding condition. The second is that when we add an adjoint embedding condition, we obtain a sufficient but not necessary condition for boundedness of $\Gamma_\phi$ . The third is that there exists a bounded analytic function for which the associated anti-analytic Carleson embedding is unbounded. As a consequence, boundedness of an analytic Carleson embedding does not imply that the anti-analytic ditto is bounded. This answers a question by Nazarov, Pisier, Treil, and Volberg.

  • Functional Analysis Seminar
6 March 2018
15:45
Yalong Cao
Abstract

We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold X and define DT4 invariants by integrating the Euler class of a tautological vector bundle against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when L corresponds to a smooth divisor on X. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by exp(M(q) − 1), where M(q) denotes the MacMahon function. This is joint work with Martijn Kool.

  • Algebraic Geometry Seminar

Pages