Date
Mon, 11 Mar 2013
Time
15:45 - 16:45
Location
Oxford-Man Institute
Speaker
NIKOLAOS ENGLEZOS
Organisation
University of Piraeus

Abstract: Burgers equation is a quasilinear partial differential equation (PDE), proposed in 1930's to model the evolution of turbulent fluid motion, which can be linearized to the heat equation via the celebrated Cole-Hopf transformation. In the first part of the talk, we study in detail general versions of stochastic Burgers equation with random coefficients, in both forward and backward sense. Concerning the former, the Cole-Hopf transformation still applies and we reduce a forward stochastic Burgers equation to a forward stochastic heat equation that can be treated in a “pathwise" manner. In case of deterministic coefficients, we obtain a probabilistic representation of the Cole-Hopf transformation by associating the backward Burgers equation with a system of forward-backward stochastic differential equations (FBSDEs). Returning to random coefficients, we exploit this representation in order to establish a stochastic version of the Cole-Hopf transformation. This generalized transformation allows us to find solutions to a backward stochastic Burgers equation through a backward stochastic heat equation, subject to additional constraints that reflect the presence of randomness in the coefficients. In both settings, forward and backward, stochastic Feynman-Kac formulae are derived for the solutions of the respective stochastic Burgers equations, as well. Finally, an application that illustrates the obtained results is presented to a pricing/hedging problem arising from mathematical finance.

In the second part of the talk, we study a class of stochastic saddlepoint systems, represented by fully coupled FBSDEs with infinite horizon, that gives rise to a continuous time rational expectations / consol rate model with random coefficients. Under standard Lipschitz and monotonicity conditions, and by means of the contraction mapping principle, we establish existence, uniqueness and dependence on a parameter of adapted solutions. Making further the connection with quasilinear backward stochastic PDEs (BSPDEs), we are led to the notion of stochastic viscosity solutions. A stochastic maximum principle for the optimal control problem of a large investor is also provided as an application to this framework.

This is joint work with N. Frangos, X.- I. Kartala and A. N. Yannacopoulos*

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.