Date
Tue, 23 Apr 2013
Time
12:00 - 13:00
Location
L3
Speaker
Philip Stamp (Vancouver)

              Conventional decoherence (usually called 'Environmental

Decoherence') is supposed to be a result of correlations

established between some quantum system and the environment.

'Intrinsic decoherence' is hypothesized as being an essential

feature of Nature - its existence would entail a breakdown of

quantum mechanics. A specific mechanism of some interest is

'gravitational decoherence', whereby gravity causes intrinsic

decoherence.

I will begin by discussing what is now known about the mechanisms of

environmental decoherence, noting in particular that they can and do

involve decoherence without dissipation (ie., pure phase decoherence).

I will then briefly review the fundamental conflict between Quantum

Mechanics and General Relativity, and several arguments that suggest

how this might be resolved by the existence of some sort of 'gravitational

decoherence'.  I then outline a theory of gravitational decoherence

(the 'GR-Psi' theory) which attempts to give a quantitative discussion of

gravitational decoherence, and which makes predictions for

experiments.

The weak field regime of this theory (relevant to experimental

predictions) is discussed in detail, along with a more speculative

discussion of the strong field regime.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.