Finite generation of invariants over an arbitrary base
|
Tue, 17/11/2009 17:00 |
Vincent Franjou (Nantes) |
Algebra Seminar |
L2 |
| A classic problem in invariant theory, often referred to as Hilbert's 14th problem, asks, when a group acts on a finitely generated commutative algebra by algebra automorphisms, whether the ring of invariants is still finitely generated. I shall present joint work with W. van der Kallen treating the problem for a Chevalley group over an arbitrary base. Progress on the corresponding problem of finite generation for rational cohomology will be discussed. | |||
