Introduction to Heegaard-Floer Homology

6 November 2013
Thomas Wasserman

A bit more than ten years ago, Peter Oszváth and Zoltán Szabó defined Heegaard-Floer homology, a gauge theory inspired invariant of three-manifolds that is designed to be more computable than its cousins, the Donaldson and Seiberg-Witten invariants for four-manifolds. This invariant is defined in terms of a Heegaard splitting of the three-manifold. In this talk I will show how Heegaard-Floer homology is defined (modulo the analysis that goes into it) and explain some of the directions in which people have taken this theory, such as knot theory and fitting Heegaard-Floer homology into the scheme of topological field theories.

  • Junior Topology and Group Theory Seminar