A quadratic elastic theory for twist-bend nematic phases

25 November 2013
17:00
Epifanio Virga
Abstract
A new nematic phase has recently been discovered and characterized experimentally. It embodies a theoretical prediction made by Robert B. Meyer in 1973 on the basis of mere symmetry considerations to the effect that a nematic phase might also exist which in its ground state would acquire a 'heliconical' configuration, similar to the chiral molecular arrangement of cholesterics, but with the nematic director precessing around a cone about the optic axis. Experiments with newly synthetized materials have shown chiral heliconical equilibrium structures with characteristic pitch in the range of 1o nanometres and cone semi-amplitude of about 20 degrees. In 2001, Ivan Dozov proposed an elastic theory for such (then still speculative) phase which features a negative bend elastic constant along with a quartic correction to the nematic energy density that makes it positive definite. This lecture will present some thoughts about the possibility of describing the elastic response of twist-bend nematics within a purely quadratic gradient theory.
  • Partial Differential Equations Seminar