Heights of motives

15 November 2013
Professor Kazuya Kato

The height of a rational number a/b (a,b integers which are coprime) is defined as max(|a|, |b|). A rational number with small (resp. big) height is a simple (resp. complicated) number. Though the notion height is so naive, height has played a fundamental role in number theory. There are important variants of this notion. In 1983, when Faltings proved the Mordell conjecture (a conjecture formulated in 1921), he first proved the Tate conjecture for abelian varieties (it was also a great conjecture) by defining heights of abelian varieties, and then deducing Mordell conjecture from this. The height of an abelian variety tells how complicated are the numbers we need to define the abelian variety. In this talk, after these initial explanations, I will explain that this height is generalized to heights of motives. (A motive is a kind of generalisation of abelian variety.) This generalisation of height is related to open problems in number theory. If we can prove finiteness of the number of motives of bounded height, we can prove important conjectures in number theory such as general Tate conjecture and Mordell-Weil type conjectures in many cases.