Pointed Hopf Algebras with triangular decomposition.

5 December 2013
14:00
Robert Laugwitz
Abstract

In this talk, two concepts are brought together: Algebras with triangular decomposition (as studied by Bazlov & Berenstein) and pointed Hopf algebra. The latter are Hopf algebras for which all simple comodules are one-dimensional (there has been recent progress on classifying all finite-dimensional examples of these by Andruskiewitsch & Schneider and others). Quantum groups share both of these features, and we can obtain possibly new classes of deformations as well as a characterization of them.

  • Representation Theory Seminar