Topological Insulators and K-theory

29 May 2014
Thomas Wasserman
Topological insulators are a type of system in condensed matter physics that exhibit a robustness that physicists like to call topological. In this talk I will give a definition of a subclass of such systems: gapped, free fermions. We will look at how such systems, as shown by Kitaev, can be classified in terms of topological K-groups by using the Clifford module model for K-theory as introduced by Atiyah, Bott and Shapiro. I will be using results from Wednesday's JTGT, where I'll give a quick introduction to topological K-theory.
  • Junior Geometry and Topology Seminar