Community structure in temporal multilayer networks

17 June 2014
13:15
Marya Bazzi
Abstract

Networks provide a convenient way to represent complex systems of interacting entities. Many networks contain "communities" of nodes that are more strongly connected to each other than to nodes in the rest of the network. Most methods for detecting communities are designed for static networks. However, in many applications, entities and/or interactions between entities evolve in time. To incorporate temporal variation into the detection of a network's community structure, two main approaches have been adopted. The first approach entails aggregating different snapshots of a network over time to form a static network and then using static techniques on the resulting network. The second approach entails using static techniques on a sequence of snapshots or aggregations over time, and then tracking the temporal evolution of communities across the sequence in some ad hoc manner. We represent a temporal network as a multilayer network (a sequence of coupled snapshots), and discuss  a method that can find communities that extend across time. 

  • Junior Applied Mathematics Seminar