The homological projective dual of Sym^2(P^n)

2 December 2014
15:45
Jorgen Rennemo
Abstract

In recent years, some powerful tools for computing semi-orthogonal decompositions of derived categories of algebraic varieties have been developed: Kuznetsov's theory of homological projective duality and the closely related technique of VGIT for LG models. In this talk I will explain how the latter works and how it can be used to understand the derived categories of complete intersections in Sym^2(P^n). As a consequence, we obtain a new proof of result of Hosono and Takagi, which says that a certain pair of non-birational Calabi-Yau 3-folds are derived equivalent.

  • Algebraic and Symplectic Geometry Seminar