Exotic spheres and the topology of the symplectomorphism group

14 October 2014
Georgios Rizell

Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction.  Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.

Joint work with Jonny Evans.


  • Algebraic and Symplectic Geometry Seminar