Finiteness properties of Kähler groups

30 October 2014
Claudio Llosa

In this talk we want to discuss results by Dimca, Papadima, and Suciu about the finiteness properties of Kähler groups. Namely, we will sketch their proof that for every $2\leq n\leq \infty$ there is a Kähler group with finiteness property $\mathcal{F}_n$, but not $FP_{n+1}$. Their proof is by explicit construction of examples. These examples all arise as subgroups of finite products of surface groups and they are the first known examples of Kähler groups with arbitrary finiteness properties. The talk does not require any prior knowledge of finiteness properties or of Kähler groups.

  • Junior Geometry and Topology Seminar