The closed-open string map for S^1-invariant Lagrangians

3 March 2015
15:45
Dmitry Tonkonog
Abstract

Given a Lagrangian submanifold invariant under a Hamiltonian loop, we partially compute the image of the loop's Seidel element under the closed-open string map into the Hochschild cohomology of the Lagrangian. This piece captures the homology class of the loop's orbits on the Lagrangian and can help to prove that the closed-open map is injective in some examples. As a corollary we prove that $\mathbb{RP}^n$ split-generates the Fukaya category of $\mathbb{CP}^n$ over a field of characteristic 2, and the same for real loci of some other toric  varieties.

  • Algebraic and Symplectic Geometry Seminar