Zabrodsky mixing

11 March 2015
16:00
Simon Gritschacher
Abstract

Localization and completion of spaces are fundamental tools in homotopy theory. "Zabrodsky mixing" uses localization to "mix homotopy types". It was used to provide a counterexample to the conjecture that any finite H-space which is $A_3$ is also $A_\infty$. The material in this talk will be very classical (and rather basic). I will describe Sullivan's localization functor and demonstrate Zabrodsky's mixing by constructing a non-classical H-space.

  • Junior Topology and Group Theory Seminar