Matrix multiplication is determined by orthogonality and trace.

12 February 2015
11:00
Chris Heunen
Abstract

Everything measurable about a quantum system, as modelled by a noncommutative operator algebra, is captured by its commutative subalgebras. We briefly survey this programme, and zoom in one specific incarnation: any bilinear associative function on the set of n-by-n matrices over a field of characteristic not two, that makes the same vectors orthogonal as ordinary matrix multiplication and gives the same trace as ordinary matrix multiplication, must in fact be ordinary matrix multiplication (or its opposite). Model-theoretic questions about the hypotheses and scope of this theorem are raised.

  • Advanced Class Logic