Cubic hypersurfaces over global fields

28 May 2015
16:00
Pankaj Vishe
Abstract

 Let $X$ be a smooth cubic hypersurface of dimension $m$ defined over a global field $K$. A conjecture of Colliot-Thelene(02) states that $X$ satisfies the Hasse Principle and Weak approximation as long as $m\geq 3$. We use a global version of Hardy-Littlewood circle method along with the theory of global $L$-functions to establish this for $m\geq 6$, in the case $K=\mathbb{F}_q(t)$, where $\text{char}(\mathbb{F}_{q})> 3$.

  • Number Theory Seminar