'Model-completeness for Henselian valued fields with finite ramification'

12 March 2015
11:00
Jamshid Derakhshan
Abstract

 This is joint work with Angus Macintyre. We prove a general model-completeness theorem for Henselian valued fields
stating that a Henselian valued field of characteristic zero with value group a Z-group and with finite ramification is model-complete in the language of rings provided that its residue field is model-complete. We apply this to extensions of p-adic fields showing that any finite or infinite extension of p-adics with finite ramification is model-complete in the language of rings.

  • Advanced Class Logic