Linear Algebra for Matrix-Free Optimization

18 June 2015
14:00
Abstract

When formulated appropriately, the broad families of sequential quadratic programming, augmented Lagrangian and interior-point methods all require the solution of symmetric saddle-point linear systems. When regularization is employed, the systems become symmetric and quasi definite. The latter are
indefinite but their rich structure and strong relationships with definite systems enable specialized linear algebra, and make them prime candidates for matrix-free implementations of optimization methods. In this talk, I explore various formulations of the step equations in optimization and corresponding
iterative methods that exploit their structure.

  • Computational Mathematics and Applications Seminar