Toward a Higher-Order Accurate Computational Flume Facility for Understanding Wave-Current-Structure Interaction

19 June 2015
Chris Kees

Accurate simulation of coastal and hydraulic structures is challenging due to a range of complex processes such as turbulent air-water flow and breaking waves. Many engineering studies are based on scale models in laboratory flumes, which are often expensive and insufficient for fully exploring these complex processes. To extend the physical laboratory facility, the US Army Engineer Research and Development Center has developed a computational flume capability for this class of problems. I will discuss the turbulent air-water flow model equations, which govern the computational flume, and the order-independent, unstructured finite element discretization on which our implementation is based. Results from our air-water verification and validation test set, which is being developed along with the computational flume, demonstrate the ability of the computational flume to predict the target phenomena, but the test results and our experience developing the computational flume suggest that significant improvements in accuracy, efficiency, and robustness may be obtained by incorporating recent improvements in numerical methods.

Key Words:

Multiphase flow, Navier-Stokes, level set methods, finite element methods, water waves

  • Industrial and Interdisciplinary Workshops