The geometry of the Ising model

7 May 2015
16:00
Bruce Bartlett
Abstract

The Ising model is a well-known statistical physics model, defined on a two-dimensional lattice. It is interesting because it exhibits a "phase transition" at a certain critical temperature. Recent mathematical research has revealed an intriguing geometry in the model, involving discrete holomorphic functions, spinors, spin structures, and the Dirac equation. I will try to outline some of these ideas.

  • Junior Geometry and Topology Seminar