Morse theory of the distance function

26 November 2015
16:00
Matthias Wink
Abstract

A basic result in Morse theory due to Reeb states that a compact manifold which admits a smooth function with only two, non-degenerate critical points is homeomorphic to the sphere. We shall apply this idea to distance function associated to a Riemannian metric to prove the diameter-sphere theorem of Grove-Shiohama: A complete Riemannian manifold with sectional curvature $\geq 1$ and diameter $> \pi / 2$ is homeomorphic to a sphere. I shall not assume any knowledge about curvature for the talk.

  • Junior Geometry and Topology Seminar