Date
Fri, 04 Dec 2015
14:15
Location
C3
Speaker
Sam Pegler
Organisation
University of Cambridge

It has been conjectured that marine ice sheets (those that

flow into the ocean) are unconditionally unstable when the underlying

bed-slope runs uphill in the direction of flow, as is typical in many

regions underneath the West Antarctic Ice Sheet. This conjecture is

supported by theoretical studies that assume a two-dimensional flow

idealization. However, if the floating section (the ice shelf) is

subject to three-dimensional stresses from the edges of the embayments

into which they flow, as is typical of many ice shelves in Antarctica,

then the ice shelf creates a buttress that supports the ice sheet.

This allows the ice sheet to remain stable under conditions that may

otherwise result in collapse of the ice sheet. This talk presents new

theoretical and experimental results relating to the effects of

three-dimensional stresses on the flow and structure of ice shelves,

and their potential to stabilize marine ice sheets.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.