Linear (in)equalities in primes

1 February 2016
Aled Walker

Many theorems and conjectures in prime number theory are equivalent to finding solutions to certain linear equations in primes -- witness Goldbach's conjecture, the twin prime conjecture, Vinogradov's theorem, finding k-term arithmetic progressions, etcetera. Classically these problems were attacked using Fourier analysis -- the 'circle' method -- which yielded some success, provided that the number of variables was sufficiently large. More recently, a long research programme of Ben Green and Terence Tao introduced two deep and wide-ranging techniques -- so-called 'higher order Fourier analysis' and the 'transference principle' -- which reduces the number of required variables dramatically. In particular, these methods give an asymptotic formula for the number of k-term arithmetic progressions of primes up to X. In this talk we will give a brief survey of these techniques, and describe new work of the speaker, partially ongoing, which applies the Green-Tao machinery to count prime solutions to certain linear inequalities in primes -- a 'higher order Davenport-Heilbronn method'. 

  • Junior Number Theory Seminar