Cutting and pasting in algebraic geometry

19 April 2016
15:45
Ravi Vakil
Abstract

Given some class of "geometric spaces", we can make a ring as follows. Additive structure: when U is an open subset a space X,  [X] = [U] + [X - U]. Multiplicative structure:  [X][Y] = [XxY]. In the algebraic setting, this ring (the "Grothendieck ring of varieties") contains surprising structure, connecting geometry to arithmetic and topology.  I will discuss some remarkable
statements about this ring (both known and conjectural), and present new statements (again, both known and conjectural).  A motivating example will be polynomials in one variable. This is joint work with Melanie Matchett Wood.

  • Algebraic and Symplectic Geometry Seminar