Cohomological Donaldson-Thomas Theory and quivers with potential

9 June 2016
16:00
Aurelio Carlucci
Abstract

Donaldson-Thomas theory was born as a mean to attach to Calabi-Yau 3-manifolds integers, invariant under small deformation of the complex structure. Subsequent evolutions have replaced integers with cohomological invariants, more flexible and with a broader range of applicable cases.

This talk is meant to be a gentle induction to the topic. We start with an introduction on virtual fundamental classes, and how they relate to deformation and obstruction spaces of a moduli space; then we pass on to the Calabi-Yau 3-dimensional case, stressing how some homological conditions are essential and can lead to generalisation. First we describe the global construction using virtual fundamental classes, then the local approach via the Behrend function and the virtual Euler characteristic.
We introduce quivers with potential, which provide a profitable framework in which to build DT-theory, as they are a source of moduli spaces locally presented as degeneracy loci. Finally, we overview the problem of categorification, introducing the DT-sheaf and showing how it relates to the numerical invariants.

  • Junior Geometry and Topology Seminar