Hilbert schemes, Torus Knots, and Khovanov Homology

Mon, 10/10/2011
14:15
Jacob Rasmussen (Cambridge) Geometry and Analysis Seminar Add to calendar L3
Khovanov homology is an invariant of knots in S^3 which categorifies the Jones polynomial. Let C be a singular plane curve. I'll describe some conjectures relating the geometry of the Hilbert scheme of points on C to a variant of Khovanov homology which categorifies the HOMFLY-PT polynomial. These conjectures suggest a relation between HOMFLY-PT homology of torus knots and the representation theory of the rational Cherednik algebra. As a consequence, we get some easily testable predictions about the Khovanov homology of torus knots.