Nonnegative matrix factorization through sparse regression

Dr Robert Luce
Abstract

We consider the problem of computing a nonnegative low rank factorization to a given nonnegative input matrix under the so-called "separabilty condition".  This assumption makes this otherwise NP hard problem polynomial time solvable, and we will use first order optimization techniques to compute such a factorization. The optimization model use is based on sparse regression with a self-dictionary, in which the low rank constraint is relaxed to the minimization of an l1-norm objective function.  We apply these techniques to endmember detection and classification in hyperspecral imaging data.

  • Computational Mathematics and Applications Seminar