Seminar series
Date
Mon, 10 Oct 2016
Time
15:45 - 16:45
Location
L6
Speaker
Chris Douglas
Organisation
Oxford

 
The dimension of a finite-dimensional vector space V can be computed as the trace of the identity endomorphism id_V.  This dimension is also the value F_V(S^1) of the circle in the 1-dimensional field theory F_V associated to the vector space.  The trace of any endomorphism f:V-->V can be interpreted as the value of that field theory on a circle with a defect point labeled by the endomorphism f.  This last invariant makes sense even when the vector space is infinite-dimensional, and gives the trace of a trace-class operator on Hilbert space.  We introduce a 2-dimensional analog of this invariant, the `2-trace'.  The 2-dimension of a finite-dimensional separable k-algebra A is the dimension of the center of the algebra.  This 2-dimension is also the value F_A(S^1 x S^1) of the torus in the 2-dimensional field theory F_A associated to the algebra. Given a 2-endomorphism p of the algebra (that is an element of the center), the 2-trace of p is the value of the field theory on a torus with a defect point labeled by p.  Generalizations of this invariant to other defect configurations make sense even when the algebra is not finite-dimensional or separable, and this leads to a general notion of 2-trace class and 2-trace in any 2-category.  This is joint work with Andre Henriques.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.