Author
Taylor, P
Baker, R
Simpson, M
Yates, C
Journal title
Journal of the Royal Society, Interface
Issue
120
Volume
13
Last updated
2025-12-01T20:26:00.933+00:00
Abstract
Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are 'compartment-based': the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise.
Symplectic ID
634288
Favourite
Off
Publication type
Journal Article
Publication date
Jul 2016
Please contact us with feedback and comments about this page.