Author
Neville, A
Matthews, P
Byrne, H
Journal title
Bull Math Biol
DOI
10.1007/s11538-006-9060-5
Issue
8
Volume
68
Last updated
2026-01-19T19:56:53.457+00:00
Page
1975-2003
Abstract
In this paper we develop a theoretical framework for investigating pattern formation in biological systems for which the tissue on which the spatial pattern resides is growing at a rate which is itself regulated by the diffusible chemicals that establish the spatial pattern. We present numerical simulations for two cases of interest, namely exponential domain growth and chemically controlled growth. Our analysis reveals that for domains undergoing rapid exponential growth dilution effects associated with domain growth influence both the spatial patterns that emerge and the concentration of chemicals present in the domain. In the latter case, there is complex interplay between the effects of the chemicals on the domain size and the influence of the domain size on the formation of patterns. The nature of these interactions is revealed by a weakly nonlinear analysis of the full system. This yields a pair of nonlinear equations for the amplitude of the spatial pattern and the domain size. The domain is found to grow (or shrink) at a rate that depends quadratically on the pattern amplitude, the particular functional forms used to model the local tissue growth rate and the kinetics of the two diffusible species dictating the resulting behaviour.
Symplectic ID
319102
Download URL
https://www.ncbi.nlm.nih.gov/pubmed/17086491
Favourite
Off
Publication type
Journal Article
Publication date
Nov 2006
Please contact us with feedback and comments about this page.